These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 38345256)

  • 21. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation.
    Hou Y; Wen Z; Cui S; Feng X; Chen J
    Nano Lett; 2016 Apr; 16(4):2268-77. PubMed ID: 26963768
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO
    Zhang B; Wang L; Zhang Y; Ding Y; Bi Y
    Angew Chem Int Ed Engl; 2018 Feb; 57(8):2248-2252. PubMed ID: 29333765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CoMoO
    Zhang G; Lu C; Li C; Li S; Zhao X; Nie K; Wang J; Feng K; Zhong J
    Phys Chem Chem Phys; 2023 May; 25(19):13410-13416. PubMed ID: 37161656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting.
    Li M; Chen L; Zhou C; Jin C; Su Y; Zhang Y
    Nanoscale; 2019 Oct; 11(39):18071-18080. PubMed ID: 31506662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting Charge Transfer Efficiency by Nanofragment MXene for Efficient Photoelectrochemical Water Splitting of NiFe(OH)
    Park J; Yoon KY; Kwak MJ; Kang J; Kim S; Chaule S; Ha SJ; Jang JH
    ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36749965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ge-Doped Hematite with FeCoNi-B
    Wang Y; Cui S; Tian Z; Han M; Zhao T; Li W
    Small; 2024 Sep; 20(36):e2400316. PubMed ID: 38716992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ru-P pair sites boost charge transport in hematite photoanodes for exceeding 1% efficient solar water splitting.
    Gao RT; Liu L; Li Y; Yang Y; He J; Liu X; Zhang X; Wang L; Wu L
    Proc Natl Acad Sci U S A; 2023 Jul; 120(27):e2300493120. PubMed ID: 37364112
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogenated TiO
    Liang Z; Hou H; Fang Z; Gao F; Wang L; Chen D; Yang W
    ACS Appl Mater Interfaces; 2019 May; 11(21):19167-19175. PubMed ID: 31058485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-atomic-site platinum steers photogenerated charge carrier lifetime of hematite nanoflakes for photoelectrochemical water splitting.
    Gao RT; Zhang J; Nakajima T; He J; Liu X; Zhang X; Wang L; Wu L
    Nat Commun; 2023 May; 14(1):2640. PubMed ID: 37156781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxygen Vacancy-Enhanced Photoelectrochemical Water Splitting of WO
    Lin W; Yu Y; Fang Y; Liu J; Li X; Wang J; Zhang Y; Wang C; Wang L; Yu X
    Langmuir; 2021 Jun; 37(21):6490-6497. PubMed ID: 34009993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of carbon dots - derived underlayer in hematite photoanodes.
    Guo Q; Luo H; Zhang J; Ruan Q; Prakash Periasamy A; Fang Y; Xie Z; Li X; Wang X; Tang J; Briscoe J; Titirici M; Jorge AB
    Nanoscale; 2020 Oct; 12(39):20220-20229. PubMed ID: 33000831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transparent Ta
    Higashi T; Nishiyama H; Suzuki Y; Sasaki Y; Hisatomi T; Katayama M; Minegishi T; Seki K; Yamada T; Domen K
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2300-2304. PubMed ID: 30548747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dual Heterojunctions and Nanobowl Morphology Engineered BiVO
    Ren K; Zhou J; Wu Z; Sun Q; Qi L
    Small; 2024 Jan; 20(1):e2304835. PubMed ID: 37653619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ni-Doped BiVO
    Chen M; Chang X; Li C; Wang H; Jia L
    J Colloid Interface Sci; 2023 Jun; 640():162-169. PubMed ID: 36848769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elucidating the Role of Hypophosphite Treatment in Enhancing the Performance of BiVO
    Wang Q; Wu L; Zhang Z; Cheng J; Chen R; Liu Y; Luo J
    ACS Appl Mater Interfaces; 2022 May; ():. PubMed ID: 35640048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.