BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 38345329)

  • 1. Cranial suture lineage and contributions to repair of the mouse skull.
    Doro D; Liu A; Lau JS; Rajendran AK; Healy C; Krstic M; Grigoriadis AE; Iseki S; Liu KJ
    Development; 2024 Feb; 151(3):. PubMed ID: 38345329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological comparison of the craniofacial phenotypes of mouse models expressing the Apert FGFR2 S252W mutation in neural crest- or mesoderm-derived tissues.
    Heuzé Y; Singh N; Basilico C; Jabs EW; Holmes G; Richtsmeier JT
    Bone; 2014 Jun; 63():101-9. PubMed ID: 24632501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sutures Possess Strong Regenerative Capacity for Calvarial Bone Injury.
    Park S; Zhao H; Urata M; Chai Y
    Stem Cells Dev; 2016 Dec; 25(23):1801-1807. PubMed ID: 27762665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Development of the Calvarial Bones and Sutures and the Pathophysiology of Craniosynostosis.
    Ishii M; Sun J; Ting MC; Maxson RE
    Curr Top Dev Biol; 2015; 115():131-56. PubMed ID: 26589924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue origins and interactions in the mammalian skull vault.
    Jiang X; Iseki S; Maxson RE; Sucov HM; Morriss-Kay GM
    Dev Biol; 2002 Jan; 241(1):106-16. PubMed ID: 11784098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Activation of Canonical Wnt Signaling Confers Mesoderm-Derived Parietal Bone with Similar Osteogenic and Skeletal Healing Capacity to Neural Crest-Derived Frontal Bone.
    Li S; Quarto N; Senarath-Yapa K; Grey N; Bai X; Longaker MT
    PLoS One; 2015; 10(10):e0138059. PubMed ID: 26431534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration.
    Maruyama T
    Keio J Med; 2019; 68(2):42. PubMed ID: 31243185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GLI1 and AXIN2 Are Distinctive Markers of Human Calvarial Mesenchymal Stromal Cells in Nonsyndromic Craniosynostosis.
    Di Pietro L; Barba M; Prampolini C; Ceccariglia S; Frassanito P; Vita A; Guadagni E; Bonvissuto D; Massimi L; Tamburrini G; Parolini O; Lattanzi W
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of distinct subpopulations of Gli1-lineage cells in the mouse mandible.
    Zhang N; Barrell WB; Liu KJ
    J Anat; 2023 Jul; 243(1):90-99. PubMed ID: 36899483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mesodermal expression of Fgfr2S252W is necessary and sufficient to induce craniosynostosis in a mouse model of Apert syndrome.
    Holmes G; Basilico C
    Dev Biol; 2012 Aug; 368(2):283-93. PubMed ID: 22664175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resolving homology in the face of shifting germ layer origins: Lessons from a major skull vault boundary.
    Teng CS; Cavin L; Maxson RE; Sánchez-Villagra MR; Crump JG
    Elife; 2019 Dec; 8():. PubMed ID: 31869306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cranial Suture Mesenchymal Stem Cells: Insights and Advances.
    Li B; Wang Y; Fan Y; Ouchi T; Zhao Z; Li L
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439795
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lineage-specific mutation of
    Cabrera Pereira A; Dasgupta K; Ho TV; Pacheco-Vergara M; Kim J; Kataria N; Liang Y; Mei J; Yu J; Witek L; Chai Y; Jeong J
    Front Physiol; 2023; 14():1225118. PubMed ID: 37593235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EphA4 as an effector of Twist1 in the guidance of osteogenic precursor cells during calvarial bone growth and in craniosynostosis.
    Ting MC; Wu NL; Roybal PG; Sun J; Liu L; Yen Y; Maxson RE
    Development; 2009 Mar; 136(5):855-64. PubMed ID: 19201948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of Gli1
    Jing D; Chen Z; Men Y; Yi Y; Wang Y; Wang J; Yi J; Wan L; Shen B; Feng JQ; Zhao Z; Zhao H; Li C
    J Bone Miner Res; 2022 Jul; 37(7):1307-1320. PubMed ID: 35443291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting calvarial bones and sutures at single-cell resolution.
    Li B; Li J; Fan Y; Zhao Z; Li L; Okano H; Ouchi T
    Biol Rev Camb Philos Soc; 2023 Oct; 98(5):1749-1767. PubMed ID: 37171117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of cranial morphogenesis and cell fate at the neural crest-mesoderm boundary by engrailed 1.
    Deckelbaum RA; Holmes G; Zhao Z; Tong C; Basilico C; Loomis CA
    Development; 2012 Apr; 139(7):1346-58. PubMed ID: 22395741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cranial Neural Crest Cells and Their Role in the Pathogenesis of Craniofacial Anomalies and Coronal Craniosynostosis.
    Siismets EM; Hatch NE
    J Dev Biol; 2020 Sep; 8(3):. PubMed ID: 32916911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural crest-derived mesenchymal progenitor cells enhance cranial allograft integration.
    Glaeser JD; Behrens P; Stefanovic T; Salehi K; Papalamprou A; Tawackoli W; Metzger MF; Eberlein S; Nelson T; Arabi Y; Kim K; Baloh RH; Ben-David S; Cohn-Schwartz D; Ryu R; Bae HW; Gazit Z; Sheyn D
    Stem Cells Transl Med; 2021 May; 10(5):797-809. PubMed ID: 33512772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell fate specification during calvarial bone and suture development.
    Lana-Elola E; Rice R; Grigoriadis AE; Rice DP
    Dev Biol; 2007 Nov; 311(2):335-46. PubMed ID: 17931618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.