BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38345864)

  • 1. AGAMOUS-LIKE24 controls pistil number in Japanese apricot by targeting the KNOTTED1-LIKE gene KNAT2/6-a.
    Bai Y; Zhou P; Ni Z; Iqbal S; Ouma KO; Huang X; Gao F; Ma C; Shi T; Gao Z
    Plant Physiol; 2024 Apr; 195(1):566-579. PubMed ID: 38345864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PmAGAMOUS recruits polycomb protein PmLHP1 to regulate single-pistil morphogenesis in Japanese apricot.
    Shi T; Bai Y; Wu X; Wang Y; Iqbal S; Tan W; Ni Z; Gao Z
    Plant Physiol; 2023 Aug; 193(1):466-482. PubMed ID: 37204822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Wide Identification of the
    Bai Y; Shi T; Huang X; Zhou P; Ouma KO; Ni Z; Gao F; Tan W; Ma C; Ma Y; Gao Z
    Genes (Basel); 2023 Apr; 14(4):. PubMed ID: 37107697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analyzing Differentially Expressed Genes and Pathways Associated with Pistil Abortion in Japanese Apricot via RNA-Seq.
    Shi T; Iqbal S; Ayaz A; Bai Y; Pan Z; Ni X; Hayat F; Saqib Bilal M; Khuram Razzaq M; Gao Z
    Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32942711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume.
    Wang W; Shi T; Ni X; Xu Y; Qu S; Gao Z
    Genome; 2018 Jan; 61(1):43-48. PubMed ID: 29035682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations in PmUFGT3 contribute to color variation of fruit skin in Japanese apricot (Prunus mume Sieb. et Zucc.).
    Ni X; Ni Z; Ouma KO; Gao Z
    BMC Plant Biol; 2022 Jun; 22(1):304. PubMed ID: 35751035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive transcriptomic and metabolomic analysis revealed distinct flavonoid biosynthesis regulation during abnormal pistil development in Japanese apricot.
    Iqbal S; Bai Y; Hayat F; Coulibaly D; Khalil-Ur-Rehman M; Shi T; Gao Z
    Genomics; 2022 Sep; 114(5):110451. PubMed ID: 35988654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot.
    Gao Z; Shi T; Luo X; Zhang Z; Zhuang W; Wang L
    BMC Genomics; 2012 Aug; 13():371. PubMed ID: 22863067
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh.
    Wang Y; Pijut PM
    Tree Physiol; 2013 Aug; 33(8):855-65. PubMed ID: 23956129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR169 and PmRGL2 synergistically regulate the NF-Y complex to activate dormancy release in Japanese apricot (Prunus mume Sieb. et Zucc.).
    Gao J; Ni X; Li H; Hayat F; Shi T; Gao Z
    Plant Mol Biol; 2021 Jan; 105(1-2):83-97. PubMed ID: 32926248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide discovery and characterization of flower development related long non-coding RNAs in Prunus mume.
    Wu X; Shi T; Iqbal S; Zhang Y; Liu L; Gao Z
    BMC Plant Biol; 2019 Feb; 19(1):64. PubMed ID: 30744565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis.
    Shi T; Gao Z; Wang L; Zhang Z; Zhuang W; Sun H; Zhong W
    PLoS One; 2012; 7(10):e47810. PubMed ID: 23091648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LC-MS based metabolic fingerprinting of apricot pistils after self-compatible and self-incompatible pollinations.
    Lénárt J; Gere A; Causon T; Hann S; Dernovics M; Németh O; Hegedűs A; Halász J
    Plant Mol Biol; 2021 Mar; 105(4-5):435-447. PubMed ID: 33296063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exon skipping of AGAMOUS homolog PrseAG in developing double flowers of Prunus lannesiana (Rosaceae).
    Liu Z; Zhang D; Liu D; Li F; Lu H
    Plant Cell Rep; 2013 Feb; 32(2):227-37. PubMed ID: 23096754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors.
    Kuijt SJ; Greco R; Agalou A; Shao J; 't Hoen CC; Overnäs E; Osnato M; Curiale S; Meynard D; van Gulik R; de Faria Maraschin S; Atallah M; de Kam RJ; Lamers GE; Guiderdoni E; Rossini L; Meijer AH; Ouwerkerk PB
    Plant Physiol; 2014 Apr; 164(4):1952-66. PubMed ID: 24532604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of key genes and regulators associated with carotenoid metabolism in apricot (Prunus armeniaca) fruit using weighted gene coexpression network analysis.
    Zhang L; Zhang Q; Li W; Zhang S; Xi W
    BMC Genomics; 2019 Nov; 20(1):876. PubMed ID: 31747897
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Testone G; Caboni E; D'Angeli S; Altamura MM; Giannino D
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769369
    [No Abstract]   [Full Text] [Related]  

  • 18. Transcription factors AS1 and AS2 interact with LHP1 to repress KNOX genes in Arabidopsis.
    Li Z; Li B; Liu J; Guo Z; Liu Y; Li Y; Shen WH; Huang Y; Huang H; Zhang Y; Dong A
    J Integr Plant Biol; 2016 Dec; 58(12):959-970. PubMed ID: 27273574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteome comparison following self- and across-pollination in self-incompatible apricot (Prunus armeniaca L.).
    Feng J; Chen X; Yuan Z; He T; Zhang L; Wu Y; Liu W; Liang Q
    Protein J; 2006 Jul; 25(5):328-35. PubMed ID: 16947077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-Wide Analysis of the
    Gao L; Lyu T; Lyu Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.