These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38345930)
1. Ti-B-O System for Catalyzing Boron Nitride Nanotube Growth. He Q; Ding L; He X; Xiao G; Wang Y; Ding F; Yao Y J Phys Chem Lett; 2024 Feb; 15(7):1921-1929. PubMed ID: 38345930 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of boron nitride nanotubes from unprocessed colemanite. Kalay S; Yilmaz Z; Culha M Beilstein J Nanotechnol; 2013; 4():843-51. PubMed ID: 24367753 [TBL] [Abstract][Full Text] [Related]
3. Thermal Conductivity of Carbon/Boron Nitride Heteronanotube and Boron Nitride Nanotube Buckypapers: Implications for Thermal Management Composites. Jones RS; Gonzalez-Munoz S; Griffiths I; Holdway P; Evers K; Luanwuthi S; Maciejewska BM; Kolosov O; Grobert N ACS Appl Nano Mater; 2023 Sep; 6(17):15374-15384. PubMed ID: 37706066 [TBL] [Abstract][Full Text] [Related]
4. Spontaneous formation of boron nitride nanotube fibers by boron impurity reduction in laser ablation of ammonia borane. Bae DS; Kim C; Lee H; Khater O; Kim KS; Shin H; Lee KH; Kim MJ Nano Converg; 2022 May; 9(1):20. PubMed ID: 35552898 [TBL] [Abstract][Full Text] [Related]
5. Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. Wang P; Zheng Y; Inoue T; Xiang R; Shawky A; Watanabe M; Anisimov A; Kauppinen EI; Chiashi S; Maruyama S ACS Nano; 2020 Apr; 14(4):4298-4305. PubMed ID: 32271541 [TBL] [Abstract][Full Text] [Related]
6. Boron Nitride Nanotube Nucleation via Network Fusion during Catalytic Chemical Vapor Deposition. McLean B; Webber GB; Page AJ J Am Chem Soc; 2019 Aug; 141(34):13385-13393. PubMed ID: 31387350 [TBL] [Abstract][Full Text] [Related]
7. Growth methodologies of boron nitride nanotubes and their neutron shielding applications: a review. Bae D; Lee KH; Kim MJ Nanoscale; 2024 Feb; 16(8):3817-3837. PubMed ID: 38327235 [TBL] [Abstract][Full Text] [Related]
8. Self-Catalytic Ternary Compounds for Efficient Synthesis of High-Quality Boron Nitride Nanotubes. Wang N; Ding L; Li T; Zhang K; Wu L; Zhou Z; He Q; He X; Wang X; Hu Y; Ding F; Zhang J; Yao Y Small; 2023 Apr; 19(14):e2206933. PubMed ID: 36631285 [TBL] [Abstract][Full Text] [Related]
9. The MgB Zhang D; Zhang K; E S; Liu D; Li C; Yao Y Nanoscale Adv; 2020 Jul; 2(7):2731-2737. PubMed ID: 36132377 [TBL] [Abstract][Full Text] [Related]
10. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth. Li L; Li LH; Chen Y; Dai XJ; Xing T; Petravic M; Liu X Nanoscale Res Lett; 2012 Jul; 7(1):417. PubMed ID: 22827911 [TBL] [Abstract][Full Text] [Related]
11. Magnesium-induced preparation of boron nitride nanotubes and their application in thermal interface materials. Li C; Long X; E S; Zhang Q; Li T; Wu J; Yao Y Nanoscale; 2019 Jun; 11(24):11457-11463. PubMed ID: 31188376 [TBL] [Abstract][Full Text] [Related]
12. Ammonium-tungstate-promoted growth of boron nitride nanotubes. E S; Li C; Li T; Geng R; Li Q; Lu W; Yao Y Nanotechnology; 2018 May; 29(19):195604. PubMed ID: 29465416 [TBL] [Abstract][Full Text] [Related]
13. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Huang Y; Lin J; Tang C; Bando Y; Zhi C; Zhai T; Dierre B; Sekiguchi T; Golberg D Nanotechnology; 2011 Apr; 22(14):145602. PubMed ID: 21346299 [TBL] [Abstract][Full Text] [Related]
14. Electrical properties of O-self-doped boron-nitride nanotubes and the piezoelectric effects of their freestanding network film. Ban C; Li L; Wei L RSC Adv; 2018 Aug; 8(51):29141-29146. PubMed ID: 35548006 [TBL] [Abstract][Full Text] [Related]
15. High-Performance Field-Emission Properties of Boron Nitride Nanotube Field Emitters. Yun KN; Sun Y; Han JS; Song YH; Lee CJ ACS Appl Mater Interfaces; 2017 Jan; 9(2):1562-1568. PubMed ID: 27991756 [TBL] [Abstract][Full Text] [Related]
16. Acute in vitro and in vivo toxicity of a commercial grade boron nitride nanotube mixture. Kodali VK; Roberts JR; Shoeb M; Wolfarth MG; Bishop L; Eye T; Barger M; Roach KA; Friend S; Schwegler-Berry D; Chen BT; Stefaniak A; Jordan KC; Whitney RR; Porter DW; Erdely AD Nanotoxicology; 2017 Oct; 11(8):1040-1058. PubMed ID: 29094619 [TBL] [Abstract][Full Text] [Related]
17. Form Factor-Free Boron Nitride Nanotube-Agarose Composites for Neutron Shielding. Jeon SW; Kim J; Yoon YJ; Yang S; Yang DC; Kim SK; Kim TH Nano Lett; 2024 Feb; 24(5):1522-1530. PubMed ID: 38147533 [TBL] [Abstract][Full Text] [Related]
18. Highly Aligned Array of Heterostructured Polyflourene-Isolated Boron Nitride and Carbon Nanotubes. Yu I; Jo Y; Ko J; Moon SY; Ahn S; Joo Y ACS Appl Mater Interfaces; 2021 Mar; 13(10):12417-12424. PubMed ID: 33650842 [TBL] [Abstract][Full Text] [Related]
19. "Surface-Like Growth" Strategy for the Direct Synthesis of Horizontally Aligned Boron Nitride Nanotubes. Wang N; Zhang K; Zhu K; Chen X; Sun Q; Zhang D; Wang Y; He Q; Zheng W; Xu W; Yao Y Nano Lett; 2024 Aug; 24(31):9442-9450. PubMed ID: 39054654 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive analysis of the CVD growth of boron nitride nanotubes. Pakdel A; Zhi C; Bando Y; Nakayama T; Golberg D Nanotechnology; 2012 Jun; 23(21):215601. PubMed ID: 22551670 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]