These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38345960)

  • 1. Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.
    Bian Q; Castellani M; Shepherd D; Duan J; Ding Z
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():822-830. PubMed ID: 38345960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of lower limb joint angles and moments during gait using artificial neural networks.
    Mundt M; Thomsen W; Witter T; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Biol Eng Comput; 2020 Jan; 58(1):211-225. PubMed ID: 31823114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Comparison of Three Neural Network Approaches for Estimating Joint Angles and Moments from Inertial Measurement Units.
    Mundt M; Johnson WR; Potthast W; Markert B; Mian A; Alderson J
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating an LSTM framework for predicting ankle joint biomechanics during gait using inertial sensors.
    Xiang L; Gu Y; Gao Z; Yu P; Shim V; Wang A; Fernandez J
    Comput Biol Med; 2024 Mar; 170():108016. PubMed ID: 38277923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepBBWAE-Net: A CNN-RNN Based Deep SuperLearner for Estimating Lower Extremity Sagittal Plane Joint Kinematics Using Shoe-Mounted IMU Sensors in Daily Living.
    Hossain MSB; Dranetz J; Choi H; Guo Z
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):3906-3917. PubMed ID: 35385394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous online prediction of lower limb joints angles based on sEMG signals by deep learning approach.
    Song Q; Ma X; Liu Y
    Comput Biol Med; 2023 Sep; 163():107124. PubMed ID: 37315381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous Estimation of Human Knee Joint Angles by Fusing Kinematic and Myoelectric Signals.
    Sun N; Cao M; Chen Y; Chen Y; Wang J; Wang Q; Chen X; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2446-2455. PubMed ID: 35994557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An LSTM-Based Prediction Method for Lower Limb Intention Perception by Integrative Analysis of Kinect Visual Signal.
    He J; Guo Z; Shao Z; Zhao J; Dan G
    J Healthc Eng; 2020; 2020():8024789. PubMed ID: 32774824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tracking Bilateral Lower Limb Kinematics of Distance Runners on Treadmill Using a Single Inertial Measurement Unit.
    Patra Y; Liu Q; Chan RHM; Thomson D; Chow DHK; Fuller B; Cheung RTH
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network.
    Lee T; Kim I; Lee SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transferable multi-modal fusion in knee angles and gait phases for their continuous prediction.
    Guo Z; Zheng H; Wu H; Zhang J; Zhou G; Long J
    J Neural Eng; 2023 May; 20(3):. PubMed ID: 37059084
    [No Abstract]   [Full Text] [Related]  

  • 13. Estimation of Lower Extremity Muscle Activity in Gait Using the Wearable Inertial Measurement Units and Neural Network.
    Khant M; Gouwanda D; Gopalai AA; Lim KH; Foong CC
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks.
    Senanayake D; Halgamuge S; Ackland DC
    J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of ground reaction force and joint moments based on optical motion capture data during gait.
    Mundt M; Koeppe A; David S; Bamer F; Potthast W; Markert B
    Med Eng Phys; 2020 Dec; 86():29-34. PubMed ID: 33261730
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hybrid Method Integrating A Musculoskeletal Model with Long Short-Term Memory (LSTM) for Human Motion Prediction.
    Bian Q; Shepherd DE; Ding Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4230-4236. PubMed ID: 36085870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lower-Limb Joint Torque Prediction Using LSTM Neural Networks and Transfer Learning.
    Zhang L; Soselia D; Wang R; Gutierrez-Farewik EM
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():600-609. PubMed ID: 35239487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel TCN-LSTM Hybrid Model for sEMG-Based Continuous Estimation of Wrist Joint Angles.
    Du J; Liu Z; Dong W; Zhang W; Miao Z
    Sensors (Basel); 2024 Aug; 24(17):. PubMed ID: 39275542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of Lower Limb Kinematics during Squat Task in Different Loading Using sEMG Activity and Deep Recurrent Neural Networks.
    Zangene AR; Abbasi A; Nazarpour K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of gait trajectories based on the Long Short Term Memory neural networks.
    Zaroug A; Garofolini A; Lai DTH; Mudie K; Begg R
    PLoS One; 2021; 16(8):e0255597. PubMed ID: 34351994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.