These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38346051)

  • 1. Vibration characterization of rolling bearings with compound fault features under multiple interference factors.
    Wang Y; Yang H; Zhao S; Fan Y; Dong R
    PLoS One; 2024; 19(2):e0297935. PubMed ID: 38346051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Teager-Kaiser Energy Operator in the Early Fault Diagnosis of Rolling Bearings.
    Shi X; Zhang Z; Xia Z; Li B; Gu X; Shi T
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonstationary feature extraction based on stochastic resonance and its application in rolling bearing fault diagnosis under strong noise background.
    Wang Z; Yang J; Guo Y; Gong T; Shan Z
    Rev Sci Instrum; 2023 Jan; 94(1):015110. PubMed ID: 36725570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intelligent Rolling Bearing Fault Diagnosis Method Using Symmetrized Dot Pattern Images and CBAM-DRN.
    Cui W; Meng G; Gou T; Wang A; Xiao R; Zhang X
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Wasserstein Generative Adversarial Network and Convolutional Neural Network under Unbalanced Dataset.
    Tang H; Gao S; Wang L; Li X; Li B; Pang S
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rolling Bearing Composite Fault Diagnosis Method Based on Enhanced Harmonic Vector Analysis.
    Lu J; Yin Q; Li S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on Fault Diagnosis of Rolling Bearings Based on Variational Mode Decomposition Improved by the Niche Genetic Algorithm.
    Shi R; Wang B; Wang Z; Liu J; Feng X; Dong L
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rolling Bearing Fault Detection System and Experiment Based on Deep Learning.
    Zhang B
    Comput Intell Neurosci; 2022; 2022():8913859. PubMed ID: 36203721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early Fault Diagnosis of Bearings Using an Improved Spectral Kurtosis by Maximum Correlated Kurtosis Deconvolution.
    Jia F; Lei Y; Shan H; Lin J
    Sensors (Basel); 2015 Nov; 15(11):29363-77. PubMed ID: 26610501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WPD-Enhanced Deep Graph Contrastive Learning Data Fusion for Fault Diagnosis of Rolling Bearing.
    Liu R; Wang X; Kumar A; Sun B; Zhou Y
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early-Stage Fault Diagnosis of Motor Bearing Based on Kurtosis Weighting and Fusion of Current-Vibration Signals.
    Zhang B; Li H; Kong W; Fu M; Ma J
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Fault Diagnosis Method for Rolling Bearing Based on Hierarchical Refined Composite Multiscale Fluctuation-Based Dispersion Entropy and PSO-ELM.
    Chen Y; Yuan Z; Chen J; Sun K
    Entropy (Basel); 2022 Oct; 24(11):. PubMed ID: 36359611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear dynamic modeling and vibration analysis for early fault evolution of rolling bearings.
    Zheng L; Xiang Y; Luo N
    Sci Rep; 2024 Oct; 14(1):23687. PubMed ID: 39390140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent Defect Diagnosis of Rolling Element Bearings under Variable Operating Conditions Using Convolutional Neural Network and Order Maps.
    Tayyab SM; Chatterton S; Pennacchi P
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An enhanced rolling bearing fault detection method combining sparse code shrinkage denoising with fast spectral correlation.
    Li J; Yu Q; Wang X; Zhang Y
    ISA Trans; 2020 Jul; 102():335-346. PubMed ID: 32122637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on Extraction of Compound Fault Characteristics for Rolling Bearings in Wind Turbines.
    Xiang L; Su H; Li Y
    Entropy (Basel); 2020 Jun; 22(6):. PubMed ID: 33286455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Automatic Bearing Fault Diagnosis Method Based on Characteristics Frequency Ratio.
    Wu D; Wang J; Wang H; Liu H; Lai L; He T; Xie T
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new fault feature extraction method of rolling bearings based on the improved self-selection ICEEMDAN-permutation entropy.
    Xiao M; Wang Z; Zhao Y; Geng G; Dustdar S; Donta PK; Ji G
    ISA Trans; 2023 Dec; 143():536-547. PubMed ID: 37770368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combine Harvester Bearing Fault-Diagnosis Method Based on SDAE-RCmvMSE.
    Yang G; Cheng Y; Xi C; Liu L; Gan X
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.