These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38346143)

  • 1. Stabilization of Naphthalene Diimide Anions by Ion Pair Formation in Nonaqueous Organic Redox Flow Batteries.
    Ahn S; Son M; Singh V; Yun A; Baik MH; Byon HR
    J Am Chem Soc; 2024 Feb; 146(7):4521-4531. PubMed ID: 38346143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling π-π Interactions of Highly Soluble Naphthalene Diimide Derivatives for Neutral pH Aqueous Redox Flow Batteries.
    Singh V; Kwon S; Choi Y; Ahn S; Kang G; Yi Y; Lim MH; Seo J; Baik MH; Byon HR
    Adv Mater; 2023 Mar; 35(13):e2210859. PubMed ID: 36749820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chiral Redox-Active Isosceles Triangles.
    Nalluri SK; Liu Z; Wu Y; Hermann KR; Samanta A; Kim DJ; Krzyaniak MD; Wasielewski MR; Stoddart JF
    J Am Chem Soc; 2016 May; 138(18):5968-77. PubMed ID: 27070768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Stable Metal-Organic Framework with Redox-Active Naphthalene Diimide Core as Cathode Material for Aqueous Zinc-Ion Batteries.
    Liu Y; Li Z; Han Y; Ji Z; Li H; Liu Y; Wei Y; Chen C; He X; Wu M
    ChemSusChem; 2023 Apr; 16(7):e202202305. PubMed ID: 36625243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azatriangulenetrione as the Anode Material for Sodium-Ion Batteries: Reversible Redox Chemistry Mediated by Lone Pair Electrons.
    Wu S; Yang J; Ni Y; Han Y; Chen W; Wu J
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39020499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cation-Dependent Stabilization of Electrogenerated Naphthalene Diimide Dianions in Porous Polymer Thin Films and Their Application to Electrical Energy Storage.
    DeBlase CR; Hernández-Burgos K; Rotter JM; Fortman DJ; Abreu Ddos S; Timm RA; Diógenes IC; Kubota LT; Abruña HD; Dichtel WR
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13225-9. PubMed ID: 26355871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Commercializable Naphthalene Diimide Anolytes for Neutral Aqueous Organic Redox Flow Batteries.
    Liu X; Zhang H; Liu C; Wang Z; Zhang X; Yu H; Zhao Y; Li MJ; Li Y; He YL; He G
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202405427. PubMed ID: 38603586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox-Active Macrocycles for Organic Rechargeable Batteries.
    Kim DJ; Hermann KR; Prokofjevs A; Otley MT; Pezzato C; Owczarek M; Stoddart JF
    J Am Chem Soc; 2017 May; 139(19):6635-6643. PubMed ID: 28437104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Realizing one-step two-electron transfer of naphthalene diimides
    Wang Z; Liu X; Zhang X; Zhang H; Zhao Y; Li Y; Yu H; He G
    Mater Horiz; 2024 Mar; 11(5):1283-1293. PubMed ID: 38165892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel π-conjugated poly(biphenyl diimide) with full utilization of carbonyls as a highly stable organic electrode for Li-ion batteries.
    Wang Z; Zhang B; Zhang Y; Yan N; He G
    RSC Adv; 2020 Aug; 10(52):31049-31055. PubMed ID: 35520648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mellitic Triimides Showing Three One-Electron Redox Reactions with Increased Redox Potential as New Electrode Materials for Li-Ion Batteries.
    Min DJ; Lee K; Park SY; Kwon JE
    ChemSusChem; 2020 May; 13(9):2303-2311. PubMed ID: 32109008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are Redox-Active Organic Small Molecules Applicable for High-Voltage (>4 V) Lithium-Ion Battery Cathodes?
    Katsuyama Y; Kobayashi H; Iwase K; Gambe Y; Honma I
    Adv Sci (Weinh); 2022 Apr; 9(12):e2200187. PubMed ID: 35266645
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.
    Geiger WE; Barrière F
    Acc Chem Res; 2010 Jul; 43(7):1030-9. PubMed ID: 20345126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Energy, Single-Ion-Mediated Nonaqueous Zinc-TEMPO Redox Flow Battery.
    Yu X; Yu WA; Manthiram A
    ACS Appl Mater Interfaces; 2020 Oct; 12(43):48654-48661. PubMed ID: 33064445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Strategies of Spinel Oxide Frameworks Enabling Reversible Mg-Ion Intercalation.
    Kwon BJ; Lapidus SH; Vaughey JT; Ceder G; Cabana J; Key B
    Acc Chem Res; 2024 Jan; 57(1):1-9. PubMed ID: 38113116
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Octaphyrin(1.0.1.0.1.0.1.0) as an Organic Electrode for Li and Na Rechargeable Batteries.
    Hwang J; Matsumoto K; Hagiwara R; Liu SY; Shin JY
    Small Methods; 2022 Mar; 6(3):e2101181. PubMed ID: 35312229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical and structural investigation of the interactions between naphthalene diimides and metal cations.
    Reiner BR; Foxman BM; Wade CR
    Dalton Trans; 2017 Jul; 46(29):9472-9480. PubMed ID: 28702583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of high-voltage and high-energy membrane-free nonaqueous lithium-based organic redox flow batteries.
    Gautam RK; Wang X; Lashgari A; Sinha S; McGrath J; Siwakoti R; Jiang JJ
    Nat Commun; 2023 Aug; 14(1):4753. PubMed ID: 37553368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Li-Binding Thermodynamics and Redox Properties of BNOPS-Based Organic Compounds for Cathodes in Lithium-Ion Batteries.
    Lee DK; Go CY; Kim KC
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31972-31979. PubMed ID: 31393115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.