These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
224 related articles for article (PubMed ID: 38346451)
1. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.). Hou Y; Zeng W; Ao C; Huang J J Biotechnol; 2024 Mar; 383():39-54. PubMed ID: 38346451 [TBL] [Abstract][Full Text] [Related]
2. Hou Y; Zeng W; Ao C; Luo Y; Wang Z; Hou M; Huang J Front Plant Sci; 2022; 13():891372. PubMed ID: 35599881 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations. Cui J; Li J; Dai C; Li L Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993 [TBL] [Abstract][Full Text] [Related]
4. Application of rhizobacteria to improve microbial community structure and maize (Zea mays L.) growth in saline soil. Hou Y; Wei C; Zeng W; Hou M; Wang Z; Xu G; Huang J; Ao C Environ Sci Pollut Res Int; 2024 Jan; 31(2):2481-2494. PubMed ID: 38066280 [TBL] [Abstract][Full Text] [Related]
5. Flavonoid metabolism plays an important role in response to lead stress in maize at seedling stage. Han Z; Zheng Y; Zhang X; Wang B; Guo Y; Guan Z BMC Plant Biol; 2024 Jul; 24(1):726. PubMed ID: 39080516 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize. Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptome and coexpression network analysis revealed the regulatory mechanism of Astragalus cicer L. in response to salt stress. Zhang Y; Dong W; Ma H; Zhao C; Ma F; Wang Y; Zheng X; Jin M BMC Plant Biol; 2024 Aug; 24(1):817. PubMed ID: 39210248 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analysis reveals comprehensive responses to cadmium stress in maize inoculated with arbuscular mycorrhizal fungi. Gu L; Zhao M; Ge M; Zhu S; Cheng B; Li X Ecotoxicol Environ Saf; 2019 Dec; 186():109744. PubMed ID: 31627093 [TBL] [Abstract][Full Text] [Related]
9. Transcriptome Profiling of Maize ( Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032 [TBL] [Abstract][Full Text] [Related]
10. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings. Chen F; Fang P; Zeng W; Ding Y; Zhuang Z; Peng Y PLoS One; 2020; 15(5):e0233616. PubMed ID: 32470066 [TBL] [Abstract][Full Text] [Related]
11. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S; Zenda T; Li J; Wang Y; Liu X; Duan H PLoS One; 2020; 15(10):e0240468. PubMed ID: 33057352 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomic and Physiological Studies Unveil that Brassinolide Maintains the Balance of Maize's Multiple Metabolisms under Low-Temperature Stress. Zhao X; He F; Qi G; Sun S; Shi Z; Niu Y; Wu Z Int J Mol Sci; 2024 Aug; 25(17):. PubMed ID: 39273343 [TBL] [Abstract][Full Text] [Related]
13. Interactions between Brassinosteroids and Strigolactones in Alleviating Salt Stress in Maize. Wang X; Qi X; Zhuang Z; Bian J; Li J; Chen J; Li Z; Peng Y Int J Mol Sci; 2024 Sep; 25(19):. PubMed ID: 39408841 [TBL] [Abstract][Full Text] [Related]
14. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. Lu X; Ma L; Zhang C; Yan H; Bao J; Gong M; Wang W; Li S; Ma S; Chen B BMC Plant Biol; 2022 Nov; 22(1):528. PubMed ID: 36376811 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. Shi P; Gu M BMC Plant Biol; 2020 Dec; 20(1):568. PubMed ID: 33380327 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014 [TBL] [Abstract][Full Text] [Related]
17. Integration of transcriptome and metabolome analyses reveals key lodging-resistance-related genes and metabolic pathways in maize. Liu L; Liu S; Lu H; Tian Z; Zhao H; Wei D; Wang S; Huang Z Front Genet; 2022; 13():1001195. PubMed ID: 36299597 [TBL] [Abstract][Full Text] [Related]
18. Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance. Wang M; Wang Y; Zhang Y; Li C; Gong S; Yan S; Li G; Hu G; Ren H; Yang J; Yu T; Yang K Genes Genomics; 2019 Jul; 41(7):781-801. PubMed ID: 30887305 [TBL] [Abstract][Full Text] [Related]
19. Combined transcriptome and metabolome analysis reveals the effects of light quality on maize hybrids. Zhan W; Guo G; Cui L; Rashid MAR; Jiang L; Sun G; Yang J; Zhang Y BMC Plant Biol; 2023 Jan; 23(1):41. PubMed ID: 36653749 [TBL] [Abstract][Full Text] [Related]
20. Transcriptomic and metabolomic analyses reveal mechanisms of adaptation to salinity in which carbon and nitrogen metabolism is altered in sugar beet roots. Liu L; Wang B; Liu D; Zou C; Wu P; Wang Z; Wang Y; Li C BMC Plant Biol; 2020 Apr; 20(1):138. PubMed ID: 32245415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]