These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38346507)

  • 41. Effects of applying different carbon substrates on nutrient removal and greenhouse gas emissions by constructed wetlands treating carbon-depleted hydroponic wastewater.
    Zhou T; Liu J; Lie Z; Lai DYF
    Bioresour Technol; 2022 Aug; 357():127312. PubMed ID: 35577221
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Emerging organic contaminants in vertical subsurface flow constructed wetlands: influence of media size, loading frequency and use of active aeration.
    Avila C; Nivala J; Olsson L; Kassa K; Headley T; Mueller RA; Bayona JM; García J
    Sci Total Environ; 2014 Oct; 494-495():211-7. PubMed ID: 25046612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Wetland plant-derived biochar enhances the diclofenac treatment performance in vertical subsurface flow constructed wetlands.
    Wu B; Xu D; Wang H; Xu R; Qin N; Han J
    Environ Res; 2022 Dec; 215(Pt 1):114326. PubMed ID: 36113575
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Micropollutant removal in an algal treatment system fed with source separated wastewater streams.
    de Wilt A; Butkovskyi A; Tuantet K; Leal LH; Fernandes TV; Langenhoff A; Zeeman G
    J Hazard Mater; 2016 Mar; 304():84-92. PubMed ID: 26546707
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laboratory- and full-scale studies on the removal of pharmaceuticals in an aerated constructed wetland: effects of aeration and hydraulic retention time on the removal efficiency and assessment of the aquatic risk.
    Auvinen H; Gebhardt W; Linnemann V; Du Laing G; Rousseau DPL
    Water Sci Technol; 2017 Sep; 76(5-6):1457-1465. PubMed ID: 28953472
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of various aeration strategies on the removal of micropollutants and biological effects in aerated horizontal flow treatment wetlands.
    Sossalla NA; Nivala J; Escher BI; Schlichting R; van Afferden M; Müller RA; Reemtsma T
    Sci Total Environ; 2022 Jul; 828():154423. PubMed ID: 35276169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent.
    Matamoros V; García J; Bayona JM
    Water Res; 2008 Feb; 42(3):653-60. PubMed ID: 17826819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Insights into the variability of microbial community composition and micropollutant degradation in diverse biological wastewater treatment systems.
    Wolff D; Krah D; Dötsch A; Ghattas AK; Wick A; Ternes TA
    Water Res; 2018 Oct; 143():313-324. PubMed ID: 29986241
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessing the impact of micropollutant mitigation measures using vertical flow constructed wetlands for municipal wastewater catchments in the greater region: a reference case for rural areas.
    Venditti S; Kiesch A; Brunhoferova H; Schlienz M; Knerr H; Dittmer U; Hansen J
    Water Sci Technol; 2022 Jul; 86(1):128-141. PubMed ID: 35838287
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of design, physico-chemical and environmental parameters on pharmaceuticals and fragrances removal by constructed wetlands.
    Hijosa-Valsero M; Matamoros V; Sidrach-Cardona R; Pedescoll A; Martín-Villacorta J; García J; Bayona JM; Bécares E
    Water Sci Technol; 2011; 63(11):2527-34. PubMed ID: 22049744
    [TBL] [Abstract][Full Text] [Related]  

  • 51. How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review.
    Verlicchi P; Zambello E
    Sci Total Environ; 2014 Feb; 470-471():1281-306. PubMed ID: 24252201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of emerging pollutants by a 3-step system: Hybrid digester, vertical flow constructed wetland and photodegradation post-treatments.
    Sánchez M; Ramos DR; Fernández MI; Aguilar S; Ruiz I; Canle M; Soto M
    Sci Total Environ; 2022 Oct; 842():156750. PubMed ID: 35750172
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BPA and NP removal from municipal wastewater by tropical horizontal subsurface constructed wetlands.
    Toro-Vélez AF; Madera-Parra CA; Peña-Varón MR; Lee WY; Bezares-Cruz JC; Walker WS; Cárdenas-Henao H; Quesada-Calderón S; García-Hernández H; Lens PN
    Sci Total Environ; 2016 Jan; 542(Pt A):93-101. PubMed ID: 26519570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal of chlorpyrifos in recirculating vertical flow constructed wetlands with five wetland plant species.
    Tang XY; Yang Y; McBride MB; Tao R; Dai YN; Zhang XM
    Chemosphere; 2019 Feb; 216():195-202. PubMed ID: 30368084
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Evaluation of the Possibility of Using Hydroponic Cultivations for the Removal of Pharmaceuticals and Endocrine Disrupting Compounds in Municipal Sewage Treatment Plants.
    Wolecki D; Caban M; Pazda M; Stepnowski P; Kumirska J
    Molecules; 2019 Dec; 25(1):. PubMed ID: 31906110
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Removal of pharmaceutical contaminants from hospital wastewater using constructed wetlands: a review.
    Mumtaj ZA; Khan AR; Alsubih M; Aleya L; Khan RA; Khan S
    Environ Sci Pollut Res Int; 2024 Feb; 31(9):12856-12870. PubMed ID: 38277099
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vertical flow constructed wetlands: kinetics of nutrient and organic matter removal.
    Pérez MM; Hernández JM; Bossens J; Jiménez T; Rosa E; Tack F
    Water Sci Technol; 2014; 70(1):76-81. PubMed ID: 25026582
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Research Progress on Removing Antibiotic Resistance Genes in Constructed Wetlands].
    Xue H; Lin H; Wang Z; Yang YY
    Huan Jing Ke Xue; 2023 Oct; 44(10):5490-5497. PubMed ID: 37827766
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comprehensive assessment of the design configuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters.
    Hijosa-Valsero M; Matamoros V; Sidrach-Cardona R; Martín-Villacorta J; Bécares E; Bayona JM
    Water Res; 2010 Jun; 44(12):3669-78. PubMed ID: 20494393
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Batch versus continuous feeding strategies for pharmaceutical removal by subsurface flow constructed wetland.
    Zhang DQ; Gersberg RM; Zhu J; Hua T; Jinadasa KB; Tan SK
    Environ Pollut; 2012 Aug; 167():124-31. PubMed ID: 22564400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.