These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38346603)

  • 1. Impact testing as a new approach to determine mechanical strength of pharmaceutical tablets.
    Alhusban F; Murgatroyd EF
    Int J Pharm; 2024 Mar; 653():123891. PubMed ID: 38346603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methodology to estimate the break force of pharmaceutical tablets with curved faces under diametrical compression.
    Al-Sabbagh M; Polak P; Roberts RJ; Reynolds GK; Sinka IC
    Int J Pharm; 2019 Jan; 554():399-419. PubMed ID: 30308275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.
    Niwa M; Hiraishi Y
    Int J Pharm; 2014 Jan; 461(1-2):342-50. PubMed ID: 24300215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Note on the Use of Diametrical Compression to Determine Tablet Tensile Strength.
    Hilden J; Polizzi M; Zettler A
    J Pharm Sci; 2017 Jan; 106(1):418-421. PubMed ID: 27686682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial strength test for round flat faced versus capsule shaped bilayer tablets.
    Franck J; Abebe A; Keluskar R; Martin K; Majumdar A; Kottala N; Stamato H
    Pharm Dev Technol; 2015 Mar; 20(2):139-45. PubMed ID: 24219774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new tablet brittleness index.
    Gong X; Sun CC
    Eur J Pharm Biopharm; 2015 Jun; 93():260-6. PubMed ID: 25907006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression.
    Razavi SM; Gonzalez M; CuitiƱo AM
    Int J Pharm; 2015 Apr; 484(1-2):29-37. PubMed ID: 25683146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of breaking tests for the characterization of the interfacial strength of bilayer tablets.
    Castrati L; Mazel V; Busignies V; Diarra H; Rossi A; Colombo P; Tchoreloff P
    Int J Pharm; 2016 Nov; 513(1-2):709-716. PubMed ID: 27717917
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact breakage of pharmaceutical tablets.
    Hare C; Bonakdar T; Ghadiri M; Strong J
    Int J Pharm; 2018 Jan; 536(1):370-376. PubMed ID: 29197564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigations into the influence of the position of a breaking line on the tensile failure of flat, round, bevel-edged tablets using finite element methodology (FEM) and its practical relevance for industrial tablet strength testing.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2014 Dec; 477(1-2):306-16. PubMed ID: 25455775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bending strength of tablets with a breaking line--Comparison of the results of an elastic and a "brittle cracking" finite element model with experimental findings.
    Podczeck F; Newton JM; Fromme P
    Int J Pharm; 2015 Nov; 495(1):485-499. PubMed ID: 26363109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigations into the tensile failure of doubly-convex cylindrical tablets under diametral loading using finite element methodology.
    Podczeck F; Drake KR; Newton JM
    Int J Pharm; 2013 Sep; 454(1):412-24. PubMed ID: 23834836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Intragranular and Extragranular Fracture in the Development of Tablet Tensile Strength.
    Mitra B; Hilden J; Litster J
    J Pharm Sci; 2018 Oct; 107(10):2581-2591. PubMed ID: 29803616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive model for tensile strength of pharmaceutical tablets based on local hardness measurements.
    Juban A; Nouguier-Lehon C; Briancon S; Hoc T; Puel F
    Int J Pharm; 2015 Jul; 490(1-2):438-45. PubMed ID: 26043825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early detection of capping risk in pharmaceutical compacts.
    Xu X; Vallabh CKP; Hoag SW; Dave VS; Cetinkaya C
    Int J Pharm; 2018 Dec; 553(1-2):338-348. PubMed ID: 30367987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new parameter for characterization of tablet friability based on a systematical study of five excipients.
    Zhao H; Yu Y; Ni N; Zhao L; Lin X; Wang Y; Du R; Shen L
    Int J Pharm; 2022 Jan; 611():121339. PubMed ID: 34864121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Method for the Tensile Strength Prediction of Tablets with Differing Powder Plasticities.
    Yano T; Oshiro A; Ohsaki S; Nakamura H; Watano S
    Chem Pharm Bull (Tokyo); 2024; 72(4):374-380. PubMed ID: 38599850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of surface color as an expedient QC method for the detection of deviations in tablet hardness.
    Siddiqui A; Nazzal S
    Int J Pharm; 2007 Aug; 341(1-2):173-80. PubMed ID: 17499947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A material-sparing method for simultaneous determination of true density and powder compaction properties--aspartame as an example.
    Sun CC
    Int J Pharm; 2006 Dec; 326(1-2):94-9. PubMed ID: 16926076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tensile and shear methods for measuring strength of bilayer tablets.
    Chang SY; Li JX; Sun CC
    Int J Pharm; 2017 May; 523(1):121-126. PubMed ID: 28284920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.