These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38346640)

  • 1. Prediction of chlorophyll a and risk assessment of water blooms in Poyang Lake based on a machine learning method.
    Huang H; Zhang J
    Environ Pollut; 2024 Apr; 347():123501. PubMed ID: 38346640
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the drivers of chlorophyll-a dynamics in a landscape lake recharged by reclaimed water using interpretable machine learning.
    Wang C; Liu J; Qiu C; Su X; Ma N; Li J; Wang S; Qu S
    Sci Total Environ; 2024 Jan; 906():167483. PubMed ID: 37832666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm.
    Li S; Song K; Wang S; Liu G; Wen Z; Shang Y; Lyu L; Chen F; Xu S; Tao H; Du Y; Fang C; Mu G
    Sci Total Environ; 2021 Jul; 778():146271. PubMed ID: 33721636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of feature selection and regression models for chlorophyll-a prediction in a shallow lake.
    Li X; Sha J; Wang ZL
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19488-19498. PubMed ID: 29730758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Analysis of Influencing Factors of Chlorophyll-a in Lake Taihu Based on Bayesian Network].
    Liu J; He YC; Deng JM; Tang XM
    Huan Jing Ke Xue; 2023 May; 44(5):2592-2600. PubMed ID: 37177933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple remotely sensed datasets and machine learning models to predict chlorophyll-a concentration in the Nakdong River, South Korea.
    Lee B; Im JK; Han JW; Kang T; Kim W; Kim M; Lee S
    Environ Sci Pollut Res Int; 2024 Oct; 31(48):58505-58526. PubMed ID: 39316212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting water quality variability in a Mediterranean hypereutrophic monomictic reservoir using Sentinel 2 MSI: the importance of considering model functional form.
    Abbas M; Alameddine I
    Environ Monit Assess; 2023 Jul; 195(8):923. PubMed ID: 37410180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Hanfeng Pre-reservoir Commissioning Time Variation Feature of the Hydrology and Water Quality in Three Gorges Reservoir].
    Yang B; He BH; Wang DB
    Huan Jing Ke Xue; 2017 Apr; 38(4):1366-1375. PubMed ID: 29965137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel framework to predict chlorophyll-a concentrations in water bodies through multi-source big data and machine learning algorithms.
    Karimian H; Huang J; Chen Y; Wang Z; Huang J
    Environ Sci Pollut Res Int; 2023 Jul; 30(32):79402-79422. PubMed ID: 37286829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs.
    Yu W; Wang X; Jiang X; Zhao R; Zhao S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How reliable is chlorophyll-a as algae proxy in lake environments? New insights from the perspective of n-alkanes.
    He Y; Wang X; Xu F
    Sci Total Environ; 2022 Aug; 836():155700. PubMed ID: 35523340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine.
    Zhao D; Huang J; Li Z; Yu G; Shen H
    Sci Total Environ; 2024 Feb; 912():169152. PubMed ID: 38061660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidecadal water quality deterioration in the largest freshwater lake in China (Poyang Lake): Implications on eutrophication management.
    Li B; Yang G; Wan R
    Environ Pollut; 2020 May; 260():114033. PubMed ID: 32006887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water age prediction and its potential impacts on water quality using a hydrodynamic model for Poyang Lake, China.
    Qi H; Lu J; Chen X; Sauvage S; Sanchez-Pérez JM
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13327-41. PubMed ID: 27023820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust clustering-based hybrid technique enabling reliable reservoir water quality prediction with uncertainty quantification and spatial analysis.
    Fooladi M; Nikoo MR; Mirghafari R; Madramootoo CA; Al-Rawas G; Nazari R
    J Environ Manage; 2024 Jun; 362():121259. PubMed ID: 38830281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving lake chlorophyll-a interpreting accuracy by combining spectral and texture features of remote sensing.
    Yang Y; Zhang X; Gao W; Zhang Y; Hou X
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83628-83642. PubMed ID: 37349490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophyll a estimation in lakes using multi-parameter sonde data.
    Liu X; Georgakakos AP
    Water Res; 2021 Oct; 205():117661. PubMed ID: 34560618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic status and lake depth play important roles in determining the nutrient-chlorophyll a relationship: Evidence from thousands of lakes globally.
    Zhao L; Zhu R; Zhou Q; Jeppesen E; Yang K
    Water Res; 2023 Aug; 242():120182. PubMed ID: 37311404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term monitoring chlorophyll-a concentration using HJ-1 A/B imagery and machine learning algorithms in typical lakes, a cold semi-arid region.
    Ren J; Zhou H; Tao Z; Ge L; Song K; Xu S; Li Y; Zhang L; Zhang X; Li S
    Opt Express; 2024 Apr; 32(9):16371-16397. PubMed ID: 38859266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Algal biomass mapping of eutrophic lakes using a machine learning approach with MODIS images.
    Lai L; Zhang Y; Cao Z; Liu Z; Yang Q
    Sci Total Environ; 2023 Jul; 880():163357. PubMed ID: 37028659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.