These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38346820)

  • 1. Optimizing High-Resolution MR Angiography: The Synergistic Effects of 3D Wheel Sampling and Deep Learning-Based Reconstruction.
    Sasaki G; Uetani H; Nakaura T; Nakahara K; Morita K; Nagayama Y; Kidoh M; Iwashita K; Yoshida N; Hokamura M; Yamashita Y; Nakajima M; Ueda M; Hirai T
    J Comput Assist Tomogr; 2024 Sep-Oct 01; 48(5):819-825. PubMed ID: 38346820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the impact of super-resolution deep learning on MR angiography image quality.
    Hokamura M; Uetani H; Nakaura T; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Ueda M; Mukasa A; Hirai T
    Neuroradiology; 2024 Feb; 66(2):217-226. PubMed ID: 38148334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution deep learning reconstruction approach for enhanced visualization in lumbar spine MR bone imaging.
    Hokamura M; Nakaura T; Yoshida N; Uetani H; Shiraishi K; Kobayashi N; Matsuo K; Morita K; Nagayama Y; Kidoh M; Yamashita Y; Miyamoto T; Hirai T
    Eur J Radiol; 2024 Sep; 178():111587. PubMed ID: 39002269
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep Learning Approach for Generating MRA Images From 3D Quantitative Synthetic MRI Without Additional Scans.
    Fujita S; Hagiwara A; Otsuka Y; Hori M; Takei N; Hwang KP; Irie R; Andica C; Kamagata K; Akashi T; Kunishima Kumamaru K; Suzuki M; Wada A; Abe O; Aoki S
    Invest Radiol; 2020 Apr; 55(4):249-256. PubMed ID: 31977603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine.
    Yokota Y; Takeda C; Kidoh M; Oda S; Aoki R; Ito K; Morita K; Haraoka K; Yamashita Y; Iizuka H; Kato S; Tsujita K; Ikeda O; Yamashita Y; Utsunomiya D
    Can Assoc Radiol J; 2021 Feb; 72(1):120-127. PubMed ID: 32070116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography.
    Yasaka K; Akai H; Sugawara H; Tajima T; Akahane M; Yoshioka N; Kabasawa H; Miyo R; Ohtomo K; Abe O; Kiryu S
    Jpn J Radiol; 2022 May; 40(5):476-483. PubMed ID: 34851499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based reconstruction and 3D hybrid profile order technique for MRCP at 3T: evaluation of image quality and acquisition time.
    Shiraishi K; Nakaura T; Uetani H; Nagayama Y; Kidoh M; Kobayashi N; Morita K; Yamahita Y; Tanaka Y; Baba H; Hirai T
    Eur Radiol; 2023 Nov; 33(11):7585-7594. PubMed ID: 37178197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of deep learning-based reconstruction on high-resolution three-dimensional T2-weighted fast asymmetric spin-echo imaging in the preoperative evaluation of cerebellopontine angle tumors.
    Hokamura M; Uetani H; Hamasaki T; Nakaura T; Morita K; Yamashita Y; Kitajima M; Sugitani A; Mukasa A; Hirai T
    Neuroradiology; 2024 Jul; 66(7):1123-1130. PubMed ID: 38480538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Reconstruction to Improve the Quality of MR Imaging: Evaluating the Best Sequence for T-category Assessment in Non-small Cell Lung Cancer Patients.
    Takenaka D; Ozawa Y; Yamamoto K; Shinohara M; Ikedo M; Yui M; Oshima Y; Hamabuchi N; Nagata H; Ueda T; Ikeda H; Iwase A; Yoshikawa T; Toyama H; Ohno Y
    Magn Reson Med Sci; 2024 Oct; 23(4):487-501. PubMed ID: 37661425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved stent sharpness evaluation with super-resolution deep learning reconstruction in coronary CT angiography.
    Ryu JK; Kim KH; Otgonbaatar C; Kim DS; Shim H; Seo JW
    Br J Radiol; 2024 Jun; 97(1159):1286-1294. PubMed ID: 38733576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Synthetic TOF-MRA Generation Using Time-Resolved MRA in Fast Stroke Imaging.
    You SH; Cho Y; Kim B; Yang KS; Kim I; Kim BK; Pak A; Park SE
    AJNR Am J Neuroradiol; 2023 Dec; 44(12):1391-1398. PubMed ID: 38049991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-resolution intracranial quiescent interval slice-selective magnetic resonance angiography.
    Koktzoglou I; Edelman RR
    Magn Reson Med; 2018 Feb; 79(2):683-691. PubMed ID: 28470792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle.
    Uetani H; Nakaura T; Kitajima M; Yamashita Y; Hamasaki T; Tateishi M; Morita K; Sasao A; Oda S; Ikeda O; Yamashita Y
    Neuroradiology; 2021 Jan; 63(1):63-71. PubMed ID: 32794075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of 3D TOF-MRA and 3D CE-MRA at 3T for imaging of intracranial aneurysms.
    Cirillo M; Scomazzoni F; Cirillo L; Cadioli M; Simionato F; Iadanza A; Kirchin M; Righi C; Anzalone N
    Eur J Radiol; 2013 Dec; 82(12):e853-9. PubMed ID: 24103356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postoperative assessment of extracranial-intracranial bypass by time-resolved 3D contrast-enhanced MR angiography using parallel imaging.
    Tsuchiya K; Honya K; Fujikawa A; Tateishi H; Shiokawa Y
    AJNR Am J Neuroradiol; 2005 Oct; 26(9):2243-7. PubMed ID: 16219829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary study of super-resolution deep learning reconstruction with cardiac option for evaluation of endovascular-treated intracranial aneurysms.
    Otgonbaatar C; Kim H; Jeon PH; Jeon SH; Cha SJ; Ryu JK; Jung WB; Shim H; Ko SM; Kim JW
    Br J Radiol; 2024 Aug; 97(1160):1492-1500. PubMed ID: 38917414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.