BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 38347138)

  • 1. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses.
    Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J
    Nat Methods; 2024 Mar; 21(3):444-454. PubMed ID: 38347138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TISSUE: uncertainty-calibrated prediction of single-cell spatial transcriptomics improves downstream analyses.
    Sun ED; Ma R; Navarro Negredo P; Brunet A; Zou J
    bioRxiv; 2023 Sep; ():. PubMed ID: 37162839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leveraging spatial transcriptomics data to recover cell locations in single-cell RNA-seq with CeLEry.
    Zhang Q; Jiang S; Schroeder A; Hu J; Li K; Zhang B; Dai D; Lee EB; Xiao R; Li M
    Nat Commun; 2023 Jul; 14(1):4050. PubMed ID: 37422469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ENGEP: advancing spatial transcriptomics with accurate unmeasured gene expression prediction.
    Yang ST; Zhang XF
    Genome Biol; 2023 Dec; 24(1):293. PubMed ID: 38129866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution.
    Li B; Zhang W; Guo C; Xu H; Li L; Fang M; Hu Y; Zhang X; Yao X; Tang M; Liu K; Zhao X; Lin J; Cheng L; Chen F; Xue T; Qu K
    Nat Methods; 2022 Jun; 19(6):662-670. PubMed ID: 35577954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression.
    Xia C; Fan J; Emanuel G; Hao J; Zhuang X
    Proc Natl Acad Sci U S A; 2019 Sep; 116(39):19490-19499. PubMed ID: 31501331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial-ID: a cell typing method for spatially resolved transcriptomics via transfer learning and spatial embedding.
    Shen R; Liu L; Wu Z; Zhang Y; Yuan Z; Guo J; Yang F; Zhang C; Chen B; Feng W; Liu C; Guo J; Fan G; Zhang Y; Li Y; Xu X; Yao J
    Nat Commun; 2022 Dec; 13(1):7640. PubMed ID: 36496406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial transcriptomics deconvolution at single-cell resolution using Redeconve.
    Zhou Z; Zhong Y; Zhang Z; Ren X
    Nat Commun; 2023 Dec; 14(1):7930. PubMed ID: 38040768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.
    Liu W; Liao X; Luo Z; Yang Y; Lau MC; Jiao Y; Shi X; Zhai W; Ji H; Yeong J; Liu J
    Nat Commun; 2023 Jan; 14(1):296. PubMed ID: 36653349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Bayesian estimation of cell dependence and gene associations in spatially resolved transcriptomic data.
    Chakrabarti A; Ni Y; Mallick BK
    Sci Rep; 2024 Apr; 14(1):9516. PubMed ID: 38664448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking spatial clustering methods with spatially resolved transcriptomics data.
    Yuan Z; Zhao F; Lin S; Zhao Y; Yao J; Cui Y; Zhang XY; Zhao Y
    Nat Methods; 2024 Apr; 21(4):712-722. PubMed ID: 38491270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell type-specific inference of differential expression in spatial transcriptomics.
    Cable DM; Murray E; Shanmugam V; Zhang S; Zou LS; Diao M; Chen H; Macosko EZ; Irizarry RA; Chen F
    Nat Methods; 2022 Sep; 19(9):1076-1087. PubMed ID: 36050488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing the replicability of spatial gene expression using atlas data from the adult mouse brain.
    Lu S; Ortiz C; Fürth D; Fischer S; Meletis K; Zador A; Gillis J
    PLoS Biol; 2021 Jul; 19(7):e3001341. PubMed ID: 34280183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DIST: spatial transcriptomics enhancement using deep learning.
    Zhao Y; Wang K; Hu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating spatially variable gene detection methods for spatial transcriptomics data.
    Chen C; Kim HJ; Yang P
    Genome Biol; 2024 Jan; 25(1):18. PubMed ID: 38225676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concordance of MERFISH spatial transcriptomics with bulk and single-cell RNA sequencing.
    Liu J; Tran V; Vemuri VNP; Byrne A; Borja M; Kim YJ; Agarwal S; Wang R; Awayan K; Murti A; Taychameekiatchai A; Wang B; Emanuel G; He J; Haliburton J; Oliveira Pisco A; Neff NF
    Life Sci Alliance; 2023 Jan; 6(1):. PubMed ID: 36526371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.