These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 38347200)

  • 21. [Control of Posture and Gait by the Basal Ganglia: Pathophysiological Mechanisms Implicated in Parkinson's Disease].
    Takakusaki K; Takahashi M; Fukuyama S; Noguchi T; Chiba R
    Brain Nerve; 2022 Sep; 74(9):1067-1079. PubMed ID: 36065667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Descending Command Neurons in the Brainstem that Halt Locomotion.
    Bouvier J; Caggiano V; Leiras R; Caldeira V; Bellardita C; Balueva K; Fuchs A; Kiehn O
    Cell; 2015 Nov; 163(5):1191-1203. PubMed ID: 26590422
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locomotor recovery in spinal-transected lamprey: role of functional regeneration of descending axons from brainstem locomotor command neurons.
    McClellan AD
    Neuroscience; 1990; 37(3):781-98. PubMed ID: 2247224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reticulospinal and reticuloreticular pathways for activating the lumbar back muscles in the rat.
    Robbins A; Pfaff DW; Schwartz-Giblin S
    Exp Brain Res; 1992; 92(1):46-58. PubMed ID: 1486954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The projections to the spinal cord of the rat during development: a timetable of descent.
    Lakke EA
    Adv Anat Embryol Cell Biol; 1997; 135():I-XIV, 1-143. PubMed ID: 9257458
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cessation of activity in red nucleus neurons during stimulation of the medial medulla in decerebrate rats.
    Mileykovskiy BY; Kiyashchenko LI; Siegel JM
    J Physiol; 2002 Dec; 545(3):997-1006. PubMed ID: 12482902
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cell-Type-Specific Control of Brainstem Locomotor Circuits by Basal Ganglia.
    Roseberry TK; Lee AM; Lalive AL; Wilbrecht L; Bonci A; Kreitzer AC
    Cell; 2016 Jan; 164(3):526-37. PubMed ID: 26824660
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control of Orienting Movements and Locomotion by Projection-Defined Subsets of Brainstem V2a Neurons.
    Usseglio G; Gatier E; Heuzé A; Hérent C; Bouvier J
    Curr Biol; 2020 Dec; 30(23):4665-4681.e6. PubMed ID: 33007251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new model of the spinal locomotor networks of a salamander and its properties.
    Liu Q; Yang H; Zhang J; Wang J
    Biol Cybern; 2018 Aug; 112(4):369-385. PubMed ID: 29790009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal locomotor inputs to individually identified reticulospinal neurons in the lamprey.
    Buchanan JT
    J Neurophysiol; 2011 Nov; 106(5):2346-57. PubMed ID: 21832033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spinal glutamatergic neurons defined by EphA4 signaling are essential components of normal locomotor circuits.
    Borgius L; Nishimaru H; Caldeira V; Kunugise Y; Löw P; Reig R; Itohara S; Iwasato T; Kiehn O
    J Neurosci; 2014 Mar; 34(11):3841-53. PubMed ID: 24623763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of operation of spinal locomotor networks activated by supraspinal commands and by epidural stimulation of the spinal cord in cats.
    Musienko PE; Lyalka VF; Gorskii OV; Merkulyeva N; Gerasimenko YP; Deliagina TG; Zelenin PV
    J Physiol; 2020 Aug; 598(16):3459-3483. PubMed ID: 32445488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions.
    Noga BR; Kriellaars DJ; Jordan LM
    J Neurosci; 1991 Jun; 11(6):1691-700. PubMed ID: 2045881
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.
    Wichmann T; Bergman H; DeLong MR
    J Neural Transm (Vienna); 2018 Mar; 125(3):419-430. PubMed ID: 28601961
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Locomotor control by the brainstem and spinal cord].
    Takakusaki K; Matsuyama K
    Brain Nerve; 2010 Nov; 62(11):1117-28. PubMed ID: 21068448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Observations on the brainstem-spinal descending systems of normal and reeler mutant mice by the retrograde HRP method.
    Terashima T; Inoue K; Inoue Y; Mikoshiba K; Tsukada Y
    J Comp Neurol; 1984 May; 225(1):95-104. PubMed ID: 6725641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Subthalamic nucleus and gait disturbance: interactions between basal ganglia and brainstem and spinal pathways?
    Chen R; Lemon R
    Neurology; 2004 Oct; 63(7):1150-1. PubMed ID: 15477528
    [No Abstract]   [Full Text] [Related]  

  • 39. Descending spinal projections from the rostral gigantocellular reticular nuclei complex.
    Hermann GE; Holmes GM; Rogers RC; Beattie MS; Bresnahan JC
    J Comp Neurol; 2003 Jan; 455(2):210-21. PubMed ID: 12454986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Terminations of reticulospinal fibers originating from the gigantocellular reticular formation in the mouse spinal cord.
    Liang H; Watson C; Paxinos G
    Brain Struct Funct; 2016 Apr; 221(3):1623-33. PubMed ID: 25633472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.