These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 38347217)
1. Near-gapless and haplotype-resolved apple genomes provide insights into the genetic basis of rootstock-induced dwarfing. Li W; Chu C; Li H; Zhang H; Sun H; Wang S; Wang Z; Li Y; Foster TM; López-Girona E; Yu J; Li Y; Ma Y; Zhang K; Han Y; Zhou B; Fan X; Xiong Y; Deng CH; Wang Y; Xu X; Han Z Nat Genet; 2024 Mar; 56(3):505-516. PubMed ID: 38347217 [TBL] [Abstract][Full Text] [Related]
2. Genetic control of pear rootstock-induced dwarfing and precocity is linked to a chromosomal region syntenic to the apple Dw1 loci. Knäbel M; Friend AP; Palmer JW; Diack R; Wiedow C; Alspach P; Deng C; Gardiner SE; Tustin DS; Schaffer R; Foster T; Chagné D BMC Plant Biol; 2015 Sep; 15():230. PubMed ID: 26394845 [TBL] [Abstract][Full Text] [Related]
3. MdPIN1b encodes a putative auxin efflux carrier and has different expression patterns in BC and M9 apple rootstocks. Gan Z; Wang Y; Wu T; Xu X; Zhang X; Han Z Plant Mol Biol; 2018 Mar; 96(4-5):353-365. PubMed ID: 29340953 [TBL] [Abstract][Full Text] [Related]
4. Two quantitative trait loci, Dw1 and Dw2, are primarily responsible for rootstock-induced dwarfing in apple. Foster TM; Celton JM; Chagné D; Tustin DS; Gardiner SE Hortic Res; 2015; 2():15001. PubMed ID: 26504562 [TBL] [Abstract][Full Text] [Related]
6. A new three-locus model for rootstock-induced dwarfing in apple revealed by genetic mapping of root bark percentage. Harrison N; Harrison RJ; Barber-Perez N; Cascant-Lopez E; Cobo-Medina M; Lipska M; Conde-Ruíz R; Brain P; Gregory PJ; Fernández-Fernández F J Exp Bot; 2016 Mar; 67(6):1871-81. PubMed ID: 26826217 [TBL] [Abstract][Full Text] [Related]
7. MdWRKY9 overexpression confers intensive dwarfing in the M26 rootstock of apple by directly inhibiting brassinosteroid synthetase MdDWF4 expression. Zheng X; Zhao Y; Shan D; Shi K; Wang L; Li Q; Wang N; Zhou J; Yao J; Xue Y; Fang S; Chu J; Guo Y; Kong J New Phytol; 2018 Feb; 217(3):1086-1098. PubMed ID: 29165808 [TBL] [Abstract][Full Text] [Related]
8. Hydraulic resistance components of mature apple trees on rootstocks of different vigours. Cohen S; Naor A; Bennink J; Grava A; Tyree M J Exp Bot; 2007; 58(15-16):4213-24. PubMed ID: 18182426 [TBL] [Abstract][Full Text] [Related]
9. Methylation effect on IPT5b gene expression determines cytokinin biosynthesis in apple rootstock. Feng Y; Zhang X; Wu T; Xu X; Han Z; Wang Y Biochem Biophys Res Commun; 2017 Jan; 482(4):604-609. PubMed ID: 27865843 [TBL] [Abstract][Full Text] [Related]
10. Effects of transgenic rootstocks on growth and development of non-transgenic scion cultivars in apple. Smolka A; Li XY; Heikelt C; Welander M; Zhu LH Transgenic Res; 2010 Dec; 19(6):933-48. PubMed ID: 20135223 [TBL] [Abstract][Full Text] [Related]
11. Rootstock effects on leaf function and isotope composition in apple occurred on both scion grafted and ungrafted rootstocks under hydroponic conditions. Biasuz EC; Kalcsits L Front Plant Sci; 2023; 14():1274195. PubMed ID: 38155849 [TBL] [Abstract][Full Text] [Related]
12. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Foster TM; McAtee PA; Waite CN; Boldingh HL; McGhie TK Hortic Res; 2017; 4():17009. PubMed ID: 28435686 [TBL] [Abstract][Full Text] [Related]
13. Transcription profiles reveal sugar and hormone signaling pathways mediating tree branch architecture in apple (Malus domestica Borkh.) grafted on different rootstocks. Chen Y; An X; Zhao D; Li E; Ma R; Li Z; Cheng C PLoS One; 2020; 15(7):e0236530. PubMed ID: 32706831 [TBL] [Abstract][Full Text] [Related]
14. Root and stem hydraulic conductivity as determinants of growth potential in grafted trees of apple (Malus pumila Mill.). Atkinson CJ; Else MA; Taylor L; Dover CJ J Exp Bot; 2003 Apr; 54(385):1221-9. PubMed ID: 12654873 [TBL] [Abstract][Full Text] [Related]
15. Apple endophytic microbiota of different rootstock/scion combinations suggests a genotype-specific influence. Liu J; Abdelfattah A; Norelli J; Burchard E; Schena L; Droby S; Wisniewski M Microbiome; 2018 Jan; 6(1):18. PubMed ID: 29374490 [TBL] [Abstract][Full Text] [Related]
16. Relationships Among the Rootstock, Crop Load, and Sugar Hormone Signaling of Apple Tree, and Their Effects on Biennial Bearing. Kviklys D; Samuolienė G Front Plant Sci; 2020; 11():1213. PubMed ID: 32849752 [TBL] [Abstract][Full Text] [Related]
17. Microbial diversity composition of apple tree roots and resistance of apple Valsa canker with different grafting rootstock types. Wang J; Wang R; Kang F; Yan X; Sun L; Wang N; Gong Y; Gao X; Huang L BMC Microbiol; 2022 Jun; 22(1):148. PubMed ID: 35659248 [TBL] [Abstract][Full Text] [Related]
18. Clarifying the effects of dwarfing rootstock on vegetative and reproductive growth during tree development: a study on apple trees. Costes E; García-Villanueva E Ann Bot; 2007 Aug; 100(2):347-57. PubMed ID: 17652339 [TBL] [Abstract][Full Text] [Related]
19. 4-methylumbelliferone (4-MU) enhances drought tolerance of apple by regulating rhizosphere microbial diversity and root architecture. Zhang D; He J; Cheng P; Zhang Y; Khan A; Wang S; Li Z; Zhao S; Zhan X; Ma F; Li X; Guan Q Hortic Res; 2023 Jun; 10(6):uhad099. PubMed ID: 37427035 [TBL] [Abstract][Full Text] [Related]
20. The East Asian wild apples, Malus baccata (L.) Borkh and Malus hupehensis (Pamp.) Rehder., are additional contributors to the genomes of cultivated European and Chinese varieties. Chen X; Cornille A; An N; Xing L; Ma J; Zhao C; Wang Y; Han M; Zhang D Mol Ecol; 2023 Sep; 32(18):5125-5139. PubMed ID: 35510734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]