These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 38347563)
1. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration. Yang SY; Zhou YN; Yu XG; Fu ZY; Zhao CC; Hu Y; Lin KL; Xu YJ J Nanobiotechnology; 2024 Feb; 22(1):59. PubMed ID: 38347563 [TBL] [Abstract][Full Text] [Related]
2. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation. Ji X; Yuan X; Ma L; Bi B; Zhu H; Lei Z; Liu W; Pu H; Jiang J; Jiang X; Zhang Y; Xiao J Theranostics; 2020; 10(2):725-740. PubMed ID: 31903147 [TBL] [Abstract][Full Text] [Related]
3. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration. Long J; Yao Z; Zhang W; Liu B; Chen K; Li L; Teng B; Du XF; Li C; Yu XF; Qin L; Lai Y Adv Sci (Weinh); 2023 Oct; 10(28):e2302539. PubMed ID: 37616380 [TBL] [Abstract][Full Text] [Related]
4. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010 [TBL] [Abstract][Full Text] [Related]
5. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds. Chiu YC; Shie MY; Lin YH; Lee AK; Chen YW Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163656 [TBL] [Abstract][Full Text] [Related]
6. Macroporous scaffolds developed from CaSiO Du Z; Zhao Z; Liu H; Liu X; Zhang X; Huang Y; Leng H; Cai Q; Yang X Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111005. PubMed ID: 32487409 [TBL] [Abstract][Full Text] [Related]
7. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells. Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024 [TBL] [Abstract][Full Text] [Related]
8. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis. Zheng W; Bai Z; Huang S; Jiang K; Liu L; Wang X Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293527 [TBL] [Abstract][Full Text] [Related]
9. Vascularized 3D printed scaffolds for promoting bone regeneration. Yan Y; Chen H; Zhang H; Guo C; Yang K; Chen K; Cheng R; Qian N; Sandler N; Zhang YS; Shen H; Qi J; Cui W; Deng L Biomaterials; 2019 Jan; 190-191():97-110. PubMed ID: 30415019 [TBL] [Abstract][Full Text] [Related]
10. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
11. The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways. Lin YH; Lee AK; Ho CC; Fang MJ; Kuo TY; Shie MY Biomater Adv; 2022 Feb; 133():112660. PubMed ID: 35034814 [TBL] [Abstract][Full Text] [Related]
12. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Fu M; Li J; Liu M; Yang C; Wang Q; Wang H; Chen B; Fu Q; Sun G Int J Nanomedicine; 2023; 18():1875-1895. PubMed ID: 37051313 [TBL] [Abstract][Full Text] [Related]
13. Supercritical CO Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054 [TBL] [Abstract][Full Text] [Related]
14. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration. Ding T; Kang W; Li J; Yu L; Ge S J Nanobiotechnology; 2021 Aug; 19(1):247. PubMed ID: 34404409 [TBL] [Abstract][Full Text] [Related]
15. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration. You J; Li Y; Wang C; Lv H; Zhai S; Liu M; Liu X; Sezhen Q; Zhang L; Zhang Y; Zhou Y Adv Healthc Mater; 2024 Sep; 13(22):e2400545. PubMed ID: 38706444 [TBL] [Abstract][Full Text] [Related]
16. Three Birds, One Stone: An Osteo-Microenvironment Stage-Regulative Scaffold for Bone Defect Repair through Modulating Early Osteo-Immunomodulation, Middle Neovascularization, and Later Osteogenesis. Yuan Y; Xu Y; Mao Y; Liu H; Ou M; Lin Z; Zhao R; Long H; Cheng L; Sun B; Zhao S; Zeng M; Lu B; Lu H; Zhu Y; Chen C Adv Sci (Weinh); 2024 Feb; 11(6):e2306428. PubMed ID: 38060833 [TBL] [Abstract][Full Text] [Related]
17. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine. Wu P; Shen L; Liu HF; Zou XH; Zhao J; Huang Y; Zhu YF; Li ZY; Xu C; Luo LH; Luo ZQ; Wu MH; Cai L; Li XK; Wang ZG Mil Med Res; 2023 Jul; 10(1):35. PubMed ID: 37525300 [TBL] [Abstract][Full Text] [Related]
18. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo. Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319 [TBL] [Abstract][Full Text] [Related]
19. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone. Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148 [TBL] [Abstract][Full Text] [Related]
20. Bioinspired soft-hard combined system with mild photothermal therapeutic activity promotes diabetic bone defect healing via synergetic effects of immune activation and angiogenesis. Wu M; Liu H; Zhu Y; Wu P; Chen Y; Deng Z; Zhu X; Cai L Theranostics; 2024; 14(10):4014-4057. PubMed ID: 38994032 [No Abstract] [Full Text] [Related] [Next] [New Search]