BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 38347563)

  • 1. A xonotlite nanofiber bioactive 3D-printed hydrogel scaffold based on osteo-/angiogenesis and osteoimmune microenvironment remodeling accelerates vascularized bone regeneration.
    Yang SY; Zhou YN; Yu XG; Fu ZY; Zhao CC; Hu Y; Lin KL; Xu YJ
    J Nanobiotechnology; 2024 Feb; 22(1):59. PubMed ID: 38347563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Osteoimmune Microenvironment and Osteogenesis by 3D-Printed PLAG/black Phosphorus Scaffolds for Bone Regeneration.
    Long J; Yao Z; Zhang W; Liu B; Chen K; Li L; Teng B; Du XF; Li C; Yu XF; Qin L; Lai Y
    Adv Sci (Weinh); 2023 Oct; 10(28):e2302539. PubMed ID: 37616380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesenchymal stem cell-loaded thermosensitive hydroxypropyl chitin hydrogel combined with a three-dimensional-printed poly(ε-caprolactone) /nano-hydroxyapatite scaffold to repair bone defects via osteogenesis, angiogenesis and immunomodulation.
    Ji X; Yuan X; Ma L; Bi B; Zhu H; Lei Z; Liu W; Pu H; Jiang J; Jiang X; Zhang Y; Xiao J
    Theranostics; 2020; 10(2):725-740. PubMed ID: 31903147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration.
    Geng M; Zhang Q; Gu J; Yang J; Du H; Jia Y; Zhou X; He C
    Biomater Sci; 2021 Apr; 9(7):2631-2646. PubMed ID: 33595010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds.
    Chiu YC; Shie MY; Lin YH; Lee AK; Chen YW
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroporous scaffolds developed from CaSiO
    Du Z; Zhao Z; Liu H; Liu X; Zhang X; Huang Y; Leng H; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111005. PubMed ID: 32487409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The synergistic effects of graphene-contained 3D-printed calcium silicate/poly-ε-caprolactone scaffolds promote FGFR-induced osteogenic/angiogenic differentiation of mesenchymal stem cells.
    Lin YH; Chuang TY; Chiang WH; Chen IP; Wang K; Shie MY; Chen YW
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109887. PubMed ID: 31500024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Angiogenesis-Based Scaffold of MesoporousBioactive Glass Nanofiber on Osteogenesis.
    Zheng W; Bai Z; Huang S; Jiang K; Liu L; Wang X
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascularized 3D printed scaffolds for promoting bone regeneration.
    Yan Y; Chen H; Zhang H; Guo C; Yang K; Chen K; Cheng R; Qian N; Sandler N; Zhang YS; Shen H; Qi J; Cui W; Deng L
    Biomaterials; 2019 Jan; 190-191():97-110. PubMed ID: 30415019
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a 3D-printed magnesium-/strontium-doped calcium silicate scaffold on regulation of bone regeneration via dual-stimulation of the AKT and WNT signaling pathways.
    Lin YH; Lee AK; Ho CC; Fang MJ; Kuo TY; Shie MY
    Biomater Adv; 2022 Feb; 133():112660. PubMed ID: 35034814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction.
    Fu M; Li J; Liu M; Yang C; Wang Q; Wang H; Chen B; Fu Q; Sun G
    Int J Nanomedicine; 2023; 18():1875-1895. PubMed ID: 37051313
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three Birds, One Stone: An Osteo-Microenvironment Stage-Regulative Scaffold for Bone Defect Repair through Modulating Early Osteo-Immunomodulation, Middle Neovascularization, and Later Osteogenesis.
    Yuan Y; Xu Y; Mao Y; Liu H; Ou M; Lin Z; Zhao R; Long H; Cheng L; Sun B; Zhao S; Zeng M; Lu B; Lu H; Zhu Y; Chen C
    Adv Sci (Weinh); 2024 Feb; 11(6):e2306428. PubMed ID: 38060833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration.
    Ding T; Kang W; Li J; Yu L; Ge S
    J Nanobiotechnology; 2021 Aug; 19(1):247. PubMed ID: 34404409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The marriage of immunomodulatory, angiogenic, and osteogenic capabilities in a piezoelectric hydrogel tissue engineering scaffold for military medicine.
    Wu P; Shen L; Liu HF; Zou XH; Zhao J; Huang Y; Zhu YF; Li ZY; Xu C; Luo LH; Luo ZQ; Wu MH; Cai L; Li XK; Wang ZG
    Mil Med Res; 2023 Jul; 10(1):35. PubMed ID: 37525300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Printed Mg-Doped β-TCP Bone Tissue Engineering Scaffolds: Effects of Magnesium Ion Concentration on Osteogenesis and Angiogenesis
    Gu Y; Zhang J; Zhang X; Liang G; Xu T; Niu W
    Tissue Eng Regen Med; 2019 Aug; 16(4):415-429. PubMed ID: 31413945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structurally and Functionally Optimized Silk-Fibroin-Gelatin Scaffold Using 3D Printing to Repair Cartilage Injury In Vitro and In Vivo.
    Shi W; Sun M; Hu X; Ren B; Cheng J; Li C; Duan X; Fu X; Zhang J; Chen H; Ao Y
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sericin/ graphene oxide composite scaffold as a biomimetic extracellular matrix for structural and functional repair of calvarial bone.
    Qi C; Deng Y; Xu L; Yang C; Zhu Y; Wang G; Wang Z; Wang L
    Theranostics; 2020; 10(2):741-756. PubMed ID: 31903148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D-Printed Bioactive Calcium Silicate/Poly-ε-Caprolactone Bioscaffolds Modified with Biomimetic Extracellular Matrices for Bone Regeneration.
    Wu YA; Chiu YC; Lin YH; Ho CC; Shie MY; Chen YW
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30795573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.