These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 38347563)

  • 41. Stem Cell-Seeded 3D-Printed Scaffolds Combined with Self-Assembling Peptides for Bone Defect Repair.
    Xu H; Wang C; Liu C; Li J; Peng Z; Guo J; Zhu L
    Tissue Eng Part A; 2022 Feb; 28(3-4):111-124. PubMed ID: 34157886
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of bone morphogenic protein-2 loaded on the 3D-printed MesoCS scaffolds.
    Huang KH; Lin YH; Shie MY; Lin CP
    J Formos Med Assoc; 2018 Oct; 117(10):879-887. PubMed ID: 30097222
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D-printable chitosan/silk fibroin/cellulose nanoparticle scaffolds for bone regeneration via M2 macrophage polarization.
    Patel DK; Dutta SD; Hexiu J; Ganguly K; Lim KT
    Carbohydr Polym; 2022 Apr; 281():119077. PubMed ID: 35074128
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair.
    Gunes OC; Albayrak AZ; Tasdemir S; Sendemir A
    J Biomater Appl; 2020; 35(4-5):515-531. PubMed ID: 32600090
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functionalized 3D-Printed ST2/Gelatin Methacryloyl/Polcaprolactone Scaffolds for Enhancing Bone Regeneration with Vascularization.
    Liu G; Chen J; Wang X; Liu Y; Ma Y; Tu X
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35955478
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Osteogenic and angiogenic potentials of the cell-laden hydrogel/mussel-inspired calcium silicate complex hierarchical porous scaffold fabricated by 3D bioprinting.
    Chen YW; Shen YF; Ho CC; Yu J; Wu YA; Wang K; Shih CT; Shie MY
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():679-687. PubMed ID: 30033302
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biomimetic glycopeptide hydrogel coated PCL/nHA scaffold for enhanced cranial bone regeneration via macrophage M2 polarization-induced osteo-immunomodulation.
    Wang Y; Wang J; Gao R; Liu X; Feng Z; Zhang C; Huang P; Dong A; Kong D; Wang W
    Biomaterials; 2022 Jun; 285():121538. PubMed ID: 35504180
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fabrication and in vitro evaluation of 3D printed porous silicate substituted calcium phosphate scaffolds for bone tissue engineering.
    Chen D; Chen G; Zhang X; Chen J; Li J; Kang K; He W; Kong Y; Wu L; Su B; Zhao K; Si D; Wang X
    Biotechnol Bioeng; 2022 Nov; 119(11):3297-3310. PubMed ID: 35923072
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Elastic 3D-Printed Nanofibers Composite Scaffold for Bone Tissue Engineering.
    Cai P; Li C; Ding Y; Lu H; Yu X; Cui J; Yu F; Wang H; Wu J; El-Newehy M; Abdulhameed MM; Song L; Mo X; Sun B
    ACS Appl Mater Interfaces; 2023 Nov; 15(47):54280-54293. PubMed ID: 37973614
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration.
    Liu X; Chen M; Luo J; Zhao H; Zhou X; Gu Q; Yang H; Zhu X; Cui W; Shi Q
    Biomaterials; 2021 Sep; 276():121037. PubMed ID: 34325336
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interleukin-4-loaded hydrogel scaffold regulates macrophages polarization to promote bone mesenchymal stem cells osteogenic differentiation via TGF-β1/Smad pathway for repair of bone defect.
    Zhang J; Shi H; Zhang N; Hu L; Jing W; Pan J
    Cell Prolif; 2020 Oct; 53(10):e12907. PubMed ID: 32951298
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss.
    Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W
    Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 3D-printed scaffolds of mesoporous bioglass/gliadin/polycaprolactone ternary composite for enhancement of compressive strength, degradability, cell responses and new bone tissue ingrowth.
    Zhang Y; Yu W; Ba Z; Cui S; Wei J; Li H
    Int J Nanomedicine; 2018; 13():5433-5447. PubMed ID: 30271139
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses.
    Patel KD; Kim TH; Mandakhbayar N; Singh RK; Jang JH; Lee JH; Kim HW
    Acta Biomater; 2020 May; 108():97-110. PubMed ID: 32165193
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration.
    Wang Z; Hui A; Zhao H; Ye X; Zhang C; Wang A; Zhang C
    Int J Nanomedicine; 2020; 15():6945-6960. PubMed ID: 33061361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regenerated cellulose nanofiber reinforced chitosan hydrogel scaffolds for bone tissue engineering.
    Maharjan B; Park J; Kaliannagounder VK; Awasthi GP; Joshi MK; Park CH; Kim CS
    Carbohydr Polym; 2021 Jan; 251():117023. PubMed ID: 33142583
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D-printed bioactive and biodegradable hydrogel scaffolds of alginate/gelatin/cellulose nanocrystals for tissue engineering.
    Dutta SD; Hexiu J; Patel DK; Ganguly K; Lim KT
    Int J Biol Macromol; 2021 Jan; 167():644-658. PubMed ID: 33285198
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 3D Bioprinting of a Bioactive Composite Scaffold for Cell Delivery in Periodontal Tissue Regeneration.
    Miao G; Liang L; Li W; Ma C; Pan Y; Zhao H; Zhang Q; Xiao Y; Yang X
    Biomolecules; 2023 Jun; 13(7):. PubMed ID: 37509098
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D printed scaffolds of calcium silicate-doped β-TCP synergize with co-cultured endothelial and stromal cells to promote vascularization and bone formation.
    Deng Y; Jiang C; Li C; Li T; Peng M; Wang J; Dai K
    Sci Rep; 2017 Jul; 7(1):5588. PubMed ID: 28717129
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.