These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 38347806)
1. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. Lao Z; Tang Y; Dong X; Tan Y; Li X; Liu X; Li L; Guo C; Wei G Nanoscale; 2024 Feb; 16(8):4025-4038. PubMed ID: 38347806 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight into E22Q-mutation-induced antiparallel-to-parallel β-sheet transition of Aβ Li X; Lei J; Qi R; Xie L; Wei G Phys Chem Chem Phys; 2019 Jul; 21(28):15686-15694. PubMed ID: 31271401 [TBL] [Abstract][Full Text] [Related]
3. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain. Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363 [TBL] [Abstract][Full Text] [Related]
4. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS. Lee M; Ghosh U; Thurber KR; Kato M; Tycko R Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287 [TBL] [Abstract][Full Text] [Related]
5. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils. Lu Y; Lim L; Song J Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364 [TBL] [Abstract][Full Text] [Related]
6. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations. Nguyen P; Derreumaux P Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046 [TBL] [Abstract][Full Text] [Related]
7. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains. Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918 [TBL] [Abstract][Full Text] [Related]
8. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils. Kar M; Posey AE; Dar F; Hyman AA; Pappu RV Biochemistry; 2021 Nov; 60(43):3213-3222. PubMed ID: 34648275 [TBL] [Abstract][Full Text] [Related]
9. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Luo F; Gui X; Zhou H; Gu J; Li Y; Liu X; Zhao M; Li D; Li X; Liu C Nat Struct Mol Biol; 2018 Apr; 25(4):341-346. PubMed ID: 29610493 [TBL] [Abstract][Full Text] [Related]
10. Multiscale Computational Framework for the Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. Fernando KS; Jahanmir G; Unarta IC; Chau Y Langmuir; 2024 Apr; 40(14):7607-7619. PubMed ID: 38546977 [TBL] [Abstract][Full Text] [Related]
11. Alternative packing modes leading to amyloid polymorphism in five fragments studied with molecular dynamics. Berhanu WM; Masunov AE Biopolymers; 2012; 98(2):131-44. PubMed ID: 22020870 [TBL] [Abstract][Full Text] [Related]
12. Dissecting how ALS-associated D290V mutation enhances pathogenic aggregation of hnRNPA2 Tan Y; Chen Y; Liu X; Tang Y; Lao Z; Wei G Int J Biol Macromol; 2023 Jun; 241():124659. PubMed ID: 37119915 [TBL] [Abstract][Full Text] [Related]
13. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Murray DT; Tycko R Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552 [TBL] [Abstract][Full Text] [Related]
14. Computational insights into the aggregation mechanism and amyloidogenic core of aortic amyloid medin polypeptide. Huang F; Yan J; Zhang X; Xu H; Lian J; Yang X; Wang C; Ding F; Sun Y Colloids Surf B Biointerfaces; 2024 Dec; 244():114192. PubMed ID: 39226847 [TBL] [Abstract][Full Text] [Related]
15. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907 [TBL] [Abstract][Full Text] [Related]
16. The importance of steric zipper on the aggregation of the MVGGVV peptide derived from the amyloid beta peptide. Chang LK; Zhao JH; Liu HL; Wu JW; Chuang CK; Liu KT; Chen JT; Tsai WB; Ho Y J Biomol Struct Dyn; 2010 Aug; 28(1):39-50. PubMed ID: 20476794 [TBL] [Abstract][Full Text] [Related]
17. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases. Kreutzer AG; Nowick JS Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987 [TBL] [Abstract][Full Text] [Related]
18. Mapping the conformational dynamics and pathways of spontaneous steric zipper Peptide oligomerization. Matthes D; Gapsys V; Daebel V; de Groot BL PLoS One; 2011 May; 6(5):e19129. PubMed ID: 21559277 [TBL] [Abstract][Full Text] [Related]
19. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation. Ding X; Sun F; Chen J; Chen L; Tobin-Miyaji Y; Xue S; Qiang W; Luo SZ J Mol Biol; 2020 Jan; 432(2):467-483. PubMed ID: 31805282 [TBL] [Abstract][Full Text] [Related]
20. Amphiphilic Peptides A6K and V6K Display Distinct Oligomeric Structures and Self-Assembly Dynamics: A Combined All-Atom and Coarse-Grained Simulation Study. Sun Y; Qian Z; Guo C; Wei G Biomacromolecules; 2015 Sep; 16(9):2940-9. PubMed ID: 26301845 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]