These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 38348186)
1. Metal recovery from spent lithium-ion batteries via two-step bioleaching using adapted chemolithotrophs from an acidic mine pit lake. Lalropuia L; Kucera J; Rassy WY; Pakostova E; Schild D; Mandl M; Kremser K; Guebitz GM Front Microbiol; 2024; 15():1347072. PubMed ID: 38348186 [TBL] [Abstract][Full Text] [Related]
2. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review. Biswal BK; Balasubramanian R Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903 [TBL] [Abstract][Full Text] [Related]
3. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
4. Improvement of Li and Mn bioleaching from spent lithium-ion batteries, using step-wise addition of biogenic sulfuric acid by Naseri T; Mousavi SM Heliyon; 2024 Sep; 10(18):e37447. PubMed ID: 39315164 [TBL] [Abstract][Full Text] [Related]
5. A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach. Roy JJ; Cao B; Madhavi S Chemosphere; 2021 Nov; 282():130944. PubMed ID: 34087562 [TBL] [Abstract][Full Text] [Related]
6. Complete bioleaching of Co and Ni from spent batteries by a novel silver ion catalyzed process. Noruzi F; Nasirpour N; Vakilchap F; Mousavi SM Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5301-5316. PubMed ID: 35838790 [TBL] [Abstract][Full Text] [Related]
7. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur. Liu Z; Liao X; Zhang Y; Li S; Ye M; Gan Q; Fang X; Mo Z; Huang Y; Liang Z; Dai W; Sun S J Environ Manage; 2024 Feb; 351():119954. PubMed ID: 38169252 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetically divergent bacteria consortium from neutral activated sludge showed heightened potential on bioleaching spent lithium-ion batteries. Cai X; Tian L; Chen C; Huang W; Yu Y; Liu C; Yang B; Lu X; Mao Y Ecotoxicol Environ Saf; 2021 Oct; 223():112592. PubMed ID: 34364128 [TBL] [Abstract][Full Text] [Related]
9. Enhanced bioleaching of spent Li-ion batteries using A. ferrooxidans by application of external magnetic field. Kim J; Nwe HH; Yoon CS J Environ Manage; 2024 Sep; 367():122012. PubMed ID: 39094417 [TBL] [Abstract][Full Text] [Related]
10. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Moazzam P; Boroumand Y; Rabiei P; Baghbaderani SS; Mokarian P; Mohagheghian F; Mohammed LJ; Razmjou A Chemosphere; 2021 Aug; 277():130196. PubMed ID: 33784558 [TBL] [Abstract][Full Text] [Related]
11. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives. Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036 [TBL] [Abstract][Full Text] [Related]
12. Recycle, Recover and Repurpose Strategy of Spent Li-ion Batteries and Catalysts: Current Status and Future Opportunities. Garole DJ; Hossain R; Garole VJ; Sahajwalla V; Nerkar J; Dubal DP ChemSusChem; 2020 Jun; 13(12):3079-3100. PubMed ID: 32302053 [TBL] [Abstract][Full Text] [Related]
13. Comprehensive insights into the gallic acid assisted bioleaching process for spent LIBs: Relationships among bacterial functional genes, Co(III) reduction and metal dissolution behavior. Liao X; Ye M; Liang J; Jian J; Li S; Gan Q; Liu Z; Mo Z; Huang Y; Sun S J Hazard Mater; 2023 Apr; 447():130773. PubMed ID: 36641848 [TBL] [Abstract][Full Text] [Related]
14. Enhanced metal bioleaching mechanisms of extracellular polymeric substance for obsolete LiNi Wang J; Cui Y; Chu H; Tian B; Li H; Zhang M; Xin B J Environ Manage; 2022 Sep; 318():115429. PubMed ID: 35717690 [TBL] [Abstract][Full Text] [Related]
15. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712 [TBL] [Abstract][Full Text] [Related]
16. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability. Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652 [TBL] [Abstract][Full Text] [Related]
17. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches. Jiang T; Shi Q; Wei Z; Shah K; Efstathiadis H; Meng X; Liang Y Heliyon; 2023 May; 9(5):e15788. PubMed ID: 37180931 [TBL] [Abstract][Full Text] [Related]
18. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Naseri T; Bahaloo-Horeh N; Mousavi SM J Environ Manage; 2019 Apr; 235():357-367. PubMed ID: 30708273 [TBL] [Abstract][Full Text] [Related]
19. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
20. A review on spent Mn-containing Li-ion batteries: Recovery technologies, challenges, and future perspectives. Guo M; Zhang B; Gao M; Deng R; Zhang Q J Environ Manage; 2024 Mar; 354():120454. PubMed ID: 38412733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]