These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 38348327)

  • 1. Great Britain's power system with a high penetration of renewable energy: Dataset supporting future scenarios.
    Guerra K; Welfle A; Gutiérrez-Alvarez R; Moreno S; Haro P
    Data Brief; 2024 Apr; 53():110113. PubMed ID: 38348327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data for the modelling of the future power system with a high share of variable renewable energy.
    Guerra K; Haro P; Gutiérrez RE; Gómez-Barea A
    Data Brief; 2022 Jun; 42():108095. PubMed ID: 35402665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Profitability of Concentrated Solar-Biomass hybrid power plants: Dataset of the stochastic techno-economic assessment.
    Gutiérrez-Alvarez R; Guerra K; Haro P
    Data Brief; 2023 Jun; 48():109096. PubMed ID: 37101778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power to gas: an option for 2060 high penetration rate of renewable energy scenario of China.
    Zhang Y; Zhang X; Feng S
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):6857-6870. PubMed ID: 34460086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable renewable energy penetration impact on productivity: A case study of poultry farming.
    Dupas MC; Parison S; Noel V; Chatzimpiros P; Herbert É
    PLoS One; 2023; 18(10):e0286242. PubMed ID: 37782652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Definition of Scenarios for Modern Power Systems with a High Renewable Energy Share.
    Collados-Rodríguez C; Antolí-Gil E; Sánchez-Sánchez E; Girona-Badia J; Albernaz Lacerda V; Cheah-Mañe M; Prieto-Araujo E; Gomis-Bellmunt O
    Glob Chall; 2023 Apr; 7(4):2200129. PubMed ID: 37020620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formal optimization techniques select hydrogen to decarbonize California.
    Thai C; Brouwer J
    Sci Rep; 2024 Jan; 14(1):2435. PubMed ID: 38287018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Least cost energy system pathways towards 100% renewable energy in Ireland by 2050.
    Yue X; Patankar N; Decarolis J; Chiodi A; Rogan F; Deane JP; O'Gallachoir B
    Energy (Oxf); 2020 Sep; 207():118264. PubMed ID: 32834421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Security of supply, strategic storage and Covid19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport?
    Chiaramonti D; Maniatis K
    Appl Energy; 2020 Aug; 271():115216. PubMed ID: 35719199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of energy storage in deep decarbonization of electricity production.
    Arbabzadeh M; Sioshansi R; Johnson JX; Keoleian GA
    Nat Commun; 2019 Jul; 10(1):3413. PubMed ID: 31363084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unintended consequences of curtailment cap policies on power system decarbonization.
    Ding Y; Li M; Abdulla A; Shan R; Liu Z
    iScience; 2023 Jul; 26(7):106967. PubMed ID: 37534188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sustainable hydrogen generation and storage - a review.
    Sarmah MK; Singh TP; Kalita P; Dewan A
    RSC Adv; 2023 Aug; 13(36):25253-25275. PubMed ID: 37622026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal supply chains and power sector benefits of green hydrogen.
    Stöckl F; Schill WP; Zerrahn A
    Sci Rep; 2021 Jul; 11(1):14191. PubMed ID: 34244545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges.
    Al-Shetwi AQ
    Sci Total Environ; 2022 May; 822():153645. PubMed ID: 35124039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking Life Cycle and Integrated Assessment Modeling to Evaluate Technologies in an Evolving System Context: A Power-to-Hydrogen Case Study for the United States.
    Lamers P; Ghosh T; Upasani S; Sacchi R; Daioglou V
    Environ Sci Technol; 2023 Feb; 57(6):2464-2473. PubMed ID: 36724208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decarbonization of the Indian electricity sector: Technology choices and policy trade-offs.
    Rudnick I; Duenas-Martinez P; Botterud A; Papageorgiou DJ; Mignone BK; Rajagopalan S; Harper MR; Ganesan K
    iScience; 2022 Apr; 25(4):104017. PubMed ID: 35359809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harmonized and Open Energy Dataset for Modeling a Highly Renewable Brazilian Power System.
    Deng Y; Cao KK; Hu W; Stegen R; von Krbek K; Soria R; Rochedo PRR; Jochem P
    Sci Data; 2023 Feb; 10(1):103. PubMed ID: 36813797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep decarbonization of urban energy systems through renewable energy and sector-coupling flexibility strategies.
    Arabzadeh V; Mikkola J; Jasiūnas J; Lund PD
    J Environ Manage; 2020 Apr; 260():110090. PubMed ID: 32090816
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.