These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 38348577)
1. Is multiple wavelength diode laser for facial contouring safe? Yi KH; Oh W; Kim HM; Park HJ J Cosmet Dermatol; 2024 May; 23(5):1588-1591. PubMed ID: 38348577 [TBL] [Abstract][Full Text] [Related]
2. Nonablative skin tightening with a variable depth heating 1310-nm wavelength laser in combination with surface cooling. Alexiades-Armenakas M J Drugs Dermatol; 2007 Nov; 6(11):1096-103. PubMed ID: 18038496 [TBL] [Abstract][Full Text] [Related]
3. Study on the efficacy and safety of a high-power triple wavelength diode laser (810, 940, 1060 nm) for removing fine and less pigmented facial hair on Asian skin. Pall A; Mármol GV J Cosmet Dermatol; 2024 Apr; 23(4):1282-1290. PubMed ID: 38348571 [TBL] [Abstract][Full Text] [Related]
5. An uncommon cause of laser burns: the problem may be the use of gel. Kacar SD; Ozuguz P; Demir M; Karaca S J Cosmet Laser Ther; 2014 Apr; 16(2):104-5. PubMed ID: 24410656 [TBL] [Abstract][Full Text] [Related]
6. The safety and efficacy of a combined diode laser and bipolar radiofrequency compared with combined infrared light and bipolar radiofrequency for skin rejuvenation. Choi YJ; Lee JY; Ahn JY; Kim MN; Park MY Indian J Dermatol Venereol Leprol; 2012; 78(2):146-52. PubMed ID: 22421644 [TBL] [Abstract][Full Text] [Related]
7. The 1440 nm and 1927 nm Nonablative Fractional Diode Laser: Current Trends and Future Directions. Friedman PM; Polder KD; Sodha P; Geronemus RG J Drugs Dermatol; 2020 Aug; 19(8):s3-11. PubMed ID: 32804450 [TBL] [Abstract][Full Text] [Related]
8. Safety and Efficacy of a 1550nm/1927nm Dual Wavelength Laser for the Treatment of Photodamaged Skin. Narurkar VA; Alster TS; Bernstein EF; Lin TJ; Loncaric A J Drugs Dermatol; 2018 Jan; 17(1):41-46. PubMed ID: 29320586 [TBL] [Abstract][Full Text] [Related]
9. Comparison of efficacy and safety of a novel 755-nm diode laser with conventional 755-nm alexandrite laser in reduction of axillary hairs. Ayatollahi A; Samadi A; Rajabi-Estarabadi A; Yadangi S; Nouri K; Firooz A Lasers Med Sci; 2020 Mar; 35(2):373-378. PubMed ID: 31278429 [TBL] [Abstract][Full Text] [Related]
10. Efficacy and safety of triple wavelength laser hair reduction in skin types IV to V. Raj Kirit EP; Sivuni A; Ponugupati S; Gold MH J Cosmet Dermatol; 2021 Apr; 20(4):1117-1123. PubMed ID: 33567152 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of diode laser (810 and 940 nm) for facial skin tightening. Voravutinon N; Seawthaweesin K; Bureethan A; Srivipatana A; Vejanurug P J Cosmet Dermatol; 2015 Dec; 14(4):E7-14. PubMed ID: 26176349 [TBL] [Abstract][Full Text] [Related]
12. Safety and Efficacy of a Noninvasive 1,060-nm Diode Laser for Fat Reduction of the Flanks. Katz B; Doherty S Dermatol Surg; 2018 Mar; 44(3):388-396. PubMed ID: 28902034 [TBL] [Abstract][Full Text] [Related]
13. Novel 755-nm diode laser vs. conventional 755-nm scanned alexandrite laser: Side-by-side comparison pilot study for thorax and axillary hair removal. Paasch U; Wagner JA; Paasch HW J Cosmet Laser Ther; 2015; 17(4):189-93. PubMed ID: 25607745 [TBL] [Abstract][Full Text] [Related]
14. Safety and efficacy for hair removal in dark skin types III and IV with a high-powered, combined wavelength (810, 940 and 1060 nm) diode laser: A single-site pilot study. Gold MH; Biron J; Wilson A; Viera-Mármol G; Lamas REV; Castillejos-Pallàs M; Ferrández-Martínez JA J Cosmet Dermatol; 2022 May; 21(5):1979-1985. PubMed ID: 35306725 [TBL] [Abstract][Full Text] [Related]
15. Thermal damage patterns of diode hair-removal lasers according to various skin types and hair densities and colors: a simulation study. Shirkavand A; Ataie-Fashtami L; Sarkar S; Alinaghizadeh MR; Fateh M; Zand N; Djavid GE Photomed Laser Surg; 2012 Jul; 30(7):374-80. PubMed ID: 22656390 [TBL] [Abstract][Full Text] [Related]
16. A prospective study of the safety and efficacy of a combined bipolar radiofrequency, intense pulsed light, and infrared diode laser treatment for global facial photoaging. Jiang M; Yan F; Avram M; Lu Z Lasers Med Sci; 2017 Jul; 32(5):1051-1061. PubMed ID: 28434049 [TBL] [Abstract][Full Text] [Related]
17. The influence of water/air cooling on collateral tissue damage using a diode laser with an innovative pulse design (micropulsed mode)-an in vitro study. Beer F; Körpert W; Buchmair AG; Passow H; Meinl A; Heimel P; Moritz A Lasers Med Sci; 2013 May; 28(3):965-71. PubMed ID: 22910854 [TBL] [Abstract][Full Text] [Related]
18. Lasers for facial rejuvenation: a review. Papadavid E; Katsambas A Int J Dermatol; 2003 Jun; 42(6):480-7. PubMed ID: 12786881 [TBL] [Abstract][Full Text] [Related]
19. Mexametric and cutometric assessment of the signs of aging of the skin area around the eyes after the use of non-ablative fractional laser, non-ablative radiofrequency and intense pulsed light. Kołodziejczak AM; Rotsztejn H Dermatol Ther; 2017 Mar; 30(2):. PubMed ID: 28220602 [TBL] [Abstract][Full Text] [Related]
20. Uncovering dental implants using a new thermo-optically powered (TOP) technology with tissue air-cooling. Romanos GE; Belikov AV; Skrypnik AV; Feldchtein FI; Smirnov MZ; Altshuler GB Lasers Surg Med; 2015 Jul; 47(5):411-20. PubMed ID: 25920077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]