These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38348754)

  • 21. Dual-functional 3D-printed composite scaffold for inhibiting bacterial infection and promoting bone regeneration in infected bone defect models.
    Yang Y; Chu L; Yang S; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2018 Oct; 79():265-275. PubMed ID: 30125670
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Collagen-chitosan-hydroxyapatite composite scaffolds for bone repair in ovariectomized rats.
    Chacon EL; Bertolo MRV; de Guzzi Plepis AM; da Conceição Amaro Martins V; Dos Santos GR; Pinto CAL; Pelegrine AA; Teixeira ML; Buchaim DV; Nazari FM; Buchaim RL; Sugano GT; da Cunha MR
    Sci Rep; 2023 Jan; 13(1):28. PubMed ID: 36593236
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repair of segmental long bone defect in a rabbit radius nonunion model: comparison of cylindrical porous titanium and hydroxyapatite scaffolds.
    Zhang M; Wang GL; Zhang HF; Hu XD; Shi XY; Li S; Lin W
    Artif Organs; 2014 Jun; 38(6):493-502. PubMed ID: 24372398
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of angiogenesis in bioactive 3-dimensional poly(d,l-lactide-co-glycolide)/nano-hydroxyapatite scaffolds by in vivo multiphoton microscopy in murine calvarial critical bone defect.
    Li J; Xu Q; Teng B; Yu C; Li J; Song L; Lai YX; Zhang J; Zheng W; Ren PG
    Acta Biomater; 2016 Sep; 42():389-399. PubMed ID: 27326916
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mesenchymal stem cells seeded onto tissue-engineered osteoinductive scaffolds enhance the healing process of critical-sized radial bone defects in rat.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Moshiri A; Baharvand H
    Cell Tissue Res; 2018 Oct; 374(1):63-81. PubMed ID: 29717356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Desing and comparison of bone substitutes. Study of in vivo behavior in a rabbit model.
    García-Lamas L; Sánchez-Salcedo S; Jiménez-Díaz V; Bravo-Giménez B; Cabañas MV; Peña J; Román J; Jiménez-Holguín J; Abella M; Desco M; Lozano D; Cecilia-López D; Salinas AJ
    Rev Esp Cir Ortop Traumatol; 2023; 67(4):324-333. PubMed ID: 36646252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Repair of segmental bone defects in rabbits' radius with domestic porous tantalum encapsulated with pedicled fascial flap].
    Wang H; Wang Q; Zhang H; Shi W; Lai Z; Cui Y; Li Q; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2017 Oct; 31(10):1200-1207. PubMed ID: 29806321
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sr-HA scaffolds fabricated by SPS technology promote the repair of segmental bone defects.
    Hu B; Meng ZD; Zhang YQ; Ye LY; Wang CJ; Guo WC
    Tissue Cell; 2020 Oct; 66():101386. PubMed ID: 32933709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo.
    Guda T; Walker JA; Singleton B; Hernandez J; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomater Appl; 2014 Mar; 28(7):1016-27. PubMed ID: 23771772
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chitosan/gelatin/platelet gel enriched by a combination of hydroxyapatite and beta-tricalcium phosphate in healing of a radial bone defect model in rat.
    Oryan A; Alidadi S; Bigham-Sadegh A; Meimandi-Parizi A
    Int J Biol Macromol; 2017 Aug; 101():630-637. PubMed ID: 28363647
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Histological and biomechanical study of repairing rabbit radius segmental bone defect with porous titanium].
    Zhang HF; Zhao CY; Fan HS; Zhang H; Pei FX; Wang GL
    Beijing Da Xue Xue Bao Yi Xue Ban; 2011 Oct; 43(5):724-9. PubMed ID: 22008684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Study on local implantation of simvastatin for repairing rabbit radial critical size defects].
    Zhu J; Song Q; Wang J; Han X; Yang Y; Liao J; Song C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Apr; 24(4):465-71. PubMed ID: 20459013
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of a self-fitting, shape memory polymer scaffold in a rabbit calvarial defect model.
    Pfau MR; Beltran FO; Woodard LN; Dobson LK; Gasson SB; Robbins AB; Lawson ZT; Brian Saunders W; Moreno MR; Grunlan MA
    Acta Biomater; 2021 Dec; 136():233-242. PubMed ID: 34571270
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone Regeneration Potential of Biphasic Nanocalcium Phosphate with High Hydroxyapatite/Tricalcium Phosphate Ratios in Rabbit Calvarial Defects.
    Pripatnanont P; Praserttham P; Suttapreyasri S; Leepong N; Monmaturapoj N
    Int J Oral Maxillofac Implants; 2016; 31(2):294-303. PubMed ID: 27004276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effectiveness of tissue engineered three-dimensional bioactive graft on bone healing and regeneration: an in vivo study with significant clinical value.
    Shahrezaie M; Moshiri A; Shekarchi B; Oryan A; Maffulli N; Parvizi J
    J Tissue Eng Regen Med; 2018 Apr; 12(4):936-960. PubMed ID: 28714236
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergistic effect of strontium, bioactive glass and nano-hydroxyapatite promotes bone regeneration of critical-sized radial bone defects.
    Oryan A; Baghaban Eslaminejad M; Kamali A; Hosseini S; Sayahpour FA; Baharvand H
    J Biomed Mater Res B Appl Biomater; 2019 Jan; 107(1):50-64. PubMed ID: 29468802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Repair of rabbit radial bone defects using bone morphogenetic protein-2 combined with 3D porous silk fibroin/β-tricalcium phosphate hybrid scaffolds.
    Song J; Kim J; Woo HM; Yoon B; Park H; Park C; Kang BJ
    J Biomater Sci Polym Ed; 2018 Apr; 29(6):716-729. PubMed ID: 29405844
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.
    Lee JY; Son SJ; Son JS; Kang SS; Choi SH
    Biomed Res Int; 2016; 2016():2136215. PubMed ID: 27042660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel cellulose/hydroxyapatite scaffolds for bone tissue regeneration: In vitro and in vivo study.
    Daugela P; Pranskunas M; Juodzbalys G; Liesiene J; Baniukaitiene O; Afonso A; Sousa Gomes P
    J Tissue Eng Regen Med; 2018 May; 12(5):1195-1208. PubMed ID: 29498222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [EXPERIMENTAL STUDY ON BONE DEFECT REPAIR WITH COMPOSITE OF ATTAPULGITE/COLLAGEN TYPE I/POLY (CAPROLACTONE) IN RABBITS].
    Zhang X; Song X; Wang W; Li Z; Zhao H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2016 May; 30(5):626-633. PubMed ID: 29786308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.