These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 38348814)

  • 1. Gas Evolution as a Tool to Study Reaction Kinetics Under Biomimetic Conditions.
    Meeus EJ; Laan PCM; Ham R; de Bruin B; Reek JNH
    Chemistry; 2024 Apr; 30(23):e202400516. PubMed ID: 38348814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Membrane-Based Biomimetic Systems with Bioorthogonal Functionalities.
    Huang LL; Nie W; Zhang J; Xie HY
    Acc Chem Res; 2020 Jan; 53(1):276-287. PubMed ID: 31913016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Design of Bioorthogonal Probes and Imaging Reagents Derived from Photofunctional Transition Metal Complexes.
    Lo KK
    Acc Chem Res; 2020 Jan; 53(1):32-44. PubMed ID: 31916746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-Dimensional Metal-Organic Framework Nanosheets: A Rapidly Growing Class of Versatile Nanomaterials for Gas Separation, MALDI-TOF Matrix and Biomimetic Applications.
    Xu M; Yang SS; Gu ZY
    Chemistry; 2018 Oct; 24(57):15131-15142. PubMed ID: 30063265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts.
    Murahashi S
    Proc Jpn Acad Ser B Phys Biol Sci; 2011; 87(5):242-53. PubMed ID: 21558760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transition metal-mediated bioorthogonal protein chemistry in living cells.
    Yang M; Li J; Chen PR
    Chem Soc Rev; 2014 Sep; 43(18):6511-26. PubMed ID: 24867400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular catalysis beyond enzyme mimics.
    Meeuwissen J; Reek JN
    Nat Chem; 2010 Aug; 2(8):615-21. PubMed ID: 20651721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transition-Metal-Catalyzed Bioorthogonal Cycloaddition Reactions.
    Yang M; Yang Y; Chen PR
    Top Curr Chem (Cham); 2016 Feb; 374(1):2. PubMed ID: 27572985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal-Organic Frameworks.
    Liu X; Qi W; Wang Y; Lin D; Yang X; Su R; He Z
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33407-33415. PubMed ID: 30146872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic oxidation reactions of a naked manganese(V)-oxo porphyrin complex.
    Lanucara F; Crestoni ME
    Chemistry; 2011 Oct; 17(43):12092-100. PubMed ID: 21905135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis.
    Cao S; Ivanov T; Heuer J; Ferguson CTJ; Landfester K; Caire da Silva L
    Nat Commun; 2024 Jan; 15(1):39. PubMed ID: 38169470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Beyond the Second Coordination Sphere: Engineering Dirhodium Artificial Metalloenzymes To Enable Protein Control of Transition Metal Catalysis.
    Lewis JC
    Acc Chem Res; 2019 Mar; 52(3):576-584. PubMed ID: 30830755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition metal catalysts for the bioorthogonal synthesis of bioactive agents.
    van de L'Isle MON; Ortega-Liebana MC; Unciti-Broceta A
    Curr Opin Chem Biol; 2021 Apr; 61():32-42. PubMed ID: 33147552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions.
    James CC; de Bruin B; Reek JNH
    Angew Chem Int Ed Engl; 2023 Oct; 62(41):e202306645. PubMed ID: 37339103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Artificial metalloenzymes as catalysts in stereoselective Diels-Alder reactions.
    Reetz MT
    Chem Rec; 2012 Aug; 12(4):391-406. PubMed ID: 22711577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
    Huang R; Hirschbiegel CM; Lehot V; Liu L; Cicek YA; Rotello VM
    Adv Mater; 2024 Mar; 36(10):e2300943. PubMed ID: 37042795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.
    Zion N; Friedman A; Levy N; Elbaz L
    Adv Mater; 2018 Oct; 30(41):e1800406. PubMed ID: 29682822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.