These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 38348892)
1. Gradient Pores Enhance Charge Storage Density of Carbonaceous Cathodes for Zn-Ion Capacitor. Li X; Cai C; Hu P; Zhang B; Wu P; Fan H; Chen Z; Zhou L; Mai L; Fan HJ Adv Mater; 2024 Jun; 36(23):e2400184. PubMed ID: 38348892 [TBL] [Abstract][Full Text] [Related]
2. Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Zn-Ion Storage Capability. Wang L; Peng M; Chen J; Hu T; Yuan K; Chen Y Adv Mater; 2022 Sep; 34(39):e2203744. PubMed ID: 35951671 [TBL] [Abstract][Full Text] [Related]
3. Controllable construction of a 3D-honeycomb-like porous carbon network as a high-performance cathode for promoting Zn-ion storage capability. Li Q; Wang T; Shu T; Pan X; Tao Y Nanoscale; 2024 Oct; 16(40):19086-19099. PubMed ID: 39320517 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of zinc-ion storage capability by synergistic effects on dual-ion adsorption in hierarchical porous carbon for high-performance aqueous zinc-ion hybrid capacitors. Li HX; Shi WJ; Zhang X; Liu Y; Liu LY; Dou J J Colloid Interface Sci; 2024 Aug; 667():700-712. PubMed ID: 38670013 [TBL] [Abstract][Full Text] [Related]
5. Study of Zinc Diffusion Based on S, N-Codoped Honeycomb Carbon Cathodes for High-Performance Zinc-Ion Capacitors. Zhang Q; Yuan M; Liu L; Li S; Chen X; Liu J; Pang X; Wang X Langmuir; 2024 Mar; 40(10):5326-5337. PubMed ID: 38408337 [TBL] [Abstract][Full Text] [Related]
6. Multi-Channel Hollow Carbon Nanofibers with Graphene-Like Shell-Structure and Ultrahigh Surface Area for High-Performance Zn-Ion Hybrid Capacitors. Zhang Y; Zhu C; Xiong Y; Gao Z; Hu W; Shi J; Chen J; Tian W; Wu J; Huang M; Wang H Small Methods; 2023 Nov; 7(11):e2300714. PubMed ID: 37541666 [TBL] [Abstract][Full Text] [Related]
7. Boosting Spatial Charge Storage in Ion-Compatible Pores of Carbon Superstructures for Advanced Zinc-Ion Capacitors. Liu P; Song Z; Miao L; Lv Y; Gan L; Liu M Small; 2024 Aug; 20(32):e2400774. PubMed ID: 38616778 [TBL] [Abstract][Full Text] [Related]
8. Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. Ejigu A; Le Fevre LW; Dryfe RAW ACS Appl Mater Interfaces; 2021 Mar; 13(12):14112-14121. PubMed ID: 33724772 [TBL] [Abstract][Full Text] [Related]
9. Sub-nanopores enabling optimized ion storage performance of carbon cathodes for Zn-ion hybrid supercapacitors. Kang F; Li Y; Zheng Z; Peng X; Rong J; Dong L J Colloid Interface Sci; 2024 Sep; 669():766-774. PubMed ID: 38744154 [TBL] [Abstract][Full Text] [Related]
10. Rational design of pyrrolic-N dominated carbon material derived from aminated lignin for Zn-ion supercapacitors. Guo J; Abbas SC; Huang H; Hua Z; Manik Mian M; Cao S; Ma X; Ni Y J Colloid Interface Sci; 2023 Jul; 641():155-165. PubMed ID: 36931214 [TBL] [Abstract][Full Text] [Related]
11. High-performance aqueous zinc ion hybrid capacitors obtained by Na Zou M; Li X; Luo S; Chen J; Hou M; Gao G Nanoscale; 2023 Jul; 15(27):11681-11692. PubMed ID: 37381730 [TBL] [Abstract][Full Text] [Related]
12. High Energy and Power Zinc Ion Capacitors: A Dual-Ion Adsorption and Reversible Chemical Adsorption Coupling Mechanism. Wang L; Peng M; Chen J; Tang X; Li L; Hu T; Yuan K; Chen Y ACS Nano; 2022 Feb; 16(2):2877-2888. PubMed ID: 35129326 [TBL] [Abstract][Full Text] [Related]
13. A ZIF-8 Host for Dendrite-Free Zinc Anodes and N,O Dual-doped Carbon Cathodes for High-Performance Zinc-Ion Hybrid Capacitors. Lei L; Zheng Y; Zhang X; Su Y; Zhou X; Wu S; Shen J Chem Asian J; 2021 Aug; 16(15):2146-2153. PubMed ID: 34132493 [TBL] [Abstract][Full Text] [Related]
15. High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage. Dong L; Yang W; Yang W; Wang C; Li Y; Xu C; Wan S; He F; Kang F; Wang G Nanomicro Lett; 2019 Oct; 11(1):94. PubMed ID: 34138030 [TBL] [Abstract][Full Text] [Related]
16. Porous and graphitic carbon nanosheets with controllable structure for zinc-ion hybrid capacitor. Zhang X; Jiang C; Zhao J; Liu B; Wang T; Li H; Shi W; Zhao X; Yan X; Liu Y J Colloid Interface Sci; 2024 Jun; 664():146-155. PubMed ID: 38460380 [TBL] [Abstract][Full Text] [Related]
17. Solvothermal Synthesis and Pyrolysis Toward Heteroatom-Doped Carbon Microspheres for Zinc-Ion Hybrid Capacitors. Huang L; Gu Z; He W; Shi K; Peng L; Sheng Z; Zhang F; Feng W; Liu H Small; 2024 Apr; 20(14):e2308788. PubMed ID: 37988647 [TBL] [Abstract][Full Text] [Related]
18. Insights into Enhanced Capacitive Behavior of Carbon Cathode for Lithium Ion Capacitors: The Coupling of Pore Size and Graphitization Engineering. Zou K; Cai P; Wang B; Liu C; Li J; Qiu T; Zou G; Hou H; Ji X Nanomicro Lett; 2020 Jun; 12(1):121. PubMed ID: 34138143 [TBL] [Abstract][Full Text] [Related]
19. Phosphorus-Mediated Local Charge Distribution of N-Configuration Adsorption Sites with Enhanced Zincophilicity and Hydrophilicity for High-Energy-Density Zn-Ion Hybrid Supercapacitors. Lu W; Xie BB; Yang C; Tian C; Yan L; Ning J; Li S; Zhong Y; Hu Y Small; 2023 Nov; 19(45):e2302629. PubMed ID: 37431237 [TBL] [Abstract][Full Text] [Related]
20. Compacting Electric Double Layer Enables Carbon Electrode with Ultrahigh Zn Ion Storage Capability. Shi X; Xie J; Yang F; Wang F; Zheng D; Cao X; Yu Y; Liu Q; Lu X Angew Chem Int Ed Engl; 2022 Dec; 61(51):e202214773. PubMed ID: 36300583 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]