These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38348915)

  • 1. Modulation of the electrostatic potential around α-lactalbumin using oligoelectrolyte chains, pH and salt concentration.
    Torres PB; Baldor S; Quiroga E; Ramirez-Pastor AJ; Spelzini D; Boeris V; Narambuena CF
    Soft Matter; 2024 Feb; 20(9):2100-2112. PubMed ID: 38348915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association and electrostatic steering of alpha-lactalbumin-lysozyme heterodimers.
    Persson BA; Lund M
    Phys Chem Chem Phys; 2009 Oct; 11(39):8879-85. PubMed ID: 20449034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the reasons for α-lactalbumin adsorption on a charged surface: a study by Monte Carlo simulation.
    Narambuena CF
    Colloids Surf B Biointerfaces; 2019 Feb; 174():511-520. PubMed ID: 30497013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alpha-lactalbumin on the phase behavior of AOT-brine-isooctane mixtures: role of charge interactions.
    Shimek JW; Rohloff CM; Goldberg J; Dungan SR
    Langmuir; 2005 Jun; 21(13):5931-9. PubMed ID: 15952844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. alpha-lactalbumin-AOT charge interactions tune phase structures in isooctane/brine mixtures.
    Kim JY; Dungan SR
    Langmuir; 2009 Jul; 25(14):7918-26. PubMed ID: 19594179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic interactions in the acid denaturation of alpha-lactalbumin determined by NMR.
    Kim S; Baum J
    Protein Sci; 1998 Sep; 7(9):1930-8. PubMed ID: 9761473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects on the yield stress of whey protein isolate foams.
    Davis JP; Foegeding EA; Hansen FK
    Colloids Surf B Biointerfaces; 2004 Mar; 34(1):13-23. PubMed ID: 15261086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Colloidal characteristics, emulsifying activities, and interfacial properties of α-lactalbumin-chitosan electrostatic complexes: effects of mass ratio and pH.
    Liu Y; Fan Y; Wu X; Lu Y; Yi J
    Food Funct; 2020 Feb; 11(2):1740-1753. PubMed ID: 32043514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic molecular effect of differently charged surfactants on the solubilization capacity and physicochemical properties of salt-caged nanosuspensions containing pH-dependent and poorly water-soluble rebamipide.
    Jin G; Ngo HV; Wang J; Cui JH; Cao QR; Park C; Lee BJ
    Int J Pharm; 2022 May; 619():121686. PubMed ID: 35314274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pH Dependence of Saccharides' Influence on Thermal Denaturation of Two Model Proteins Supports an Excluded Volume Model for Stabilization Generalized to Allow for Intramolecular Electrostatic Interactions.
    Beg I; Minton AP; Islam A; Hassan MI; Ahmad F
    J Biol Chem; 2017 Jan; 292(2):505-511. PubMed ID: 27909048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How to improve nature: study of the electrostatic properties of the surface of alpha-lactalbumin.
    Permyakov SE; Makhatadze GI; Owenius R; Uversky VN; Brooks CL; Permyakov EA; Berliner LJ
    Protein Eng Des Sel; 2005 Sep; 18(9):425-33. PubMed ID: 16093284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic interactions play an essential role in the binding of oleic acid with α-lactalbumin in the HAMLET-like complex: a study using charge-specific chemical modifications.
    Xie Y; Min S; Harte NP; Kirk H; O'Brien JE; Voorheis HP; Svanborg C; Hun Mok K
    Proteins; 2013 Jan; 81(1):1-17. PubMed ID: 22777854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The electrostatic potential inside and around α-lactalbumin: Fluctuations and mean-field models.
    Torres PB; Blanco PM; Garcés JL; Narambuena CF
    J Chem Phys; 2022 Nov; 157(20):205101. PubMed ID: 36456233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge.
    Chenal A; Vernier G; Savarin P; Bushmarina NA; Gèze A; Guillain F; Gillet D; Forge V
    J Mol Biol; 2005 Jun; 349(4):890-905. PubMed ID: 15893324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein adsorption at charged surfaces: the role of electrostatic interactions and interfacial charge regulation.
    Hartvig RA; van de Weert M; Østergaard J; Jorgensen L; Jensen H
    Langmuir; 2011 Mar; 27(6):2634-43. PubMed ID: 21322572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrostatic contributions to the stability of halophilic proteins.
    Elcock AH; McCammon JA
    J Mol Biol; 1998 Jul; 280(4):731-48. PubMed ID: 9677300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pH and Salt Concentration on Stability of a Protein G Variant Using Coarse-Grained Models.
    Martins de Oliveira V; Godoi Contessoto V; Bruno da Silva F; Zago Caetano DL; Jurado de Carvalho S; Pereira Leite VB
    Biophys J; 2018 Jan; 114(1):65-75. PubMed ID: 29320697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of pH and temperature pre-treatments on the structure, surface characteristics and emulsifying properties of alpha-lactalbumin.
    Lam RS; Nickerson MT
    Food Chem; 2015 Apr; 173():163-70. PubMed ID: 25466008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Monte Carlo simulations of flexible polyanions complexing with whey proteins at their isoelectric point.
    de Vries R
    J Chem Phys; 2004 Feb; 120(7):3475-81. PubMed ID: 15268505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of solvent and ligand-induced conformational changes in alpha-lactalbumin.
    Griko YV; Remeta DP
    Protein Sci; 1999 Mar; 8(3):554-61. PubMed ID: 10091658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.