These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 38349057)

  • 1. ULDNA: integrating unsupervised multi-source language models with LSTM-attention network for high-accuracy protein-DNA binding site prediction.
    Zhu YH; Liu Z; Liu Y; Ji Z; Yu DJ
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38349057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating unsupervised language model with multi-view multiple sequence alignments for high-accuracy inter-chain contact prediction.
    Liu Z; Zhu YH; Shen LC; Xiao X; Qiu WR; Yu DJ
    Comput Biol Med; 2023 Nov; 166():107529. PubMed ID: 37748220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating unsupervised language model with triplet neural networks for protein gene ontology prediction.
    Zhu YH; Zhang C; Yu DJ; Zhang Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010793. PubMed ID: 36548439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues.
    Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X
    Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of protein-ATP binding residues using multi-view feature learning via contextual-based co-attention network.
    Wu JS; Liu Y; Ge F; Yu DJ
    Comput Biol Med; 2024 Apr; 172():108227. PubMed ID: 38460308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-scale annotation of protein binding sites via language model and geometric deep learning.
    Yuan Q; Tian C; Yang Y
    Elife; 2024 Apr; 13():. PubMed ID: 38630609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HN-PPISP: a hybrid network based on MLP-Mixer for protein-protein interaction site prediction.
    Kang Y; Xu Y; Wang X; Pu B; Yang X; Rao Y; Chen J
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36403092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DeepD2V: A Novel Deep Learning-Based Framework for Predicting Transcription Factor Binding Sites from Combined DNA Sequence.
    Deng L; Wu H; Liu X; Liu H
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34073774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An analysis of protein language model embeddings for fold prediction.
    Villegas-Morcillo A; Gomez AM; Sanchez V
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35443054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble Learning with Supervised Methods Based on Large-Scale Protein Language Models for Protein Mutation Effects Prediction.
    Qu Y; Niu Z; Ding Q; Zhao T; Kong T; Bai B; Ma J; Zhao Y; Zheng J
    Int J Mol Sci; 2023 Nov; 24(22):. PubMed ID: 38003686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating Pre-Trained protein language model and multiple window scanning deep learning networks for accurate identification of secondary active transporters in membrane proteins.
    Shahid Malik M; Ou YY
    Methods; 2023 Dec; 220():11-20. PubMed ID: 37871661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A CNN-LSTM Ensemble Model for Predicting Protein-Protein Interaction Binding Sites.
    Gong Y; Li R; Fu B; Liu Y; Wang J; Li R; Chen DZ
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3588-3599. PubMed ID: 37603483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeCban: Prediction of circRNA-RBP Interaction Sites by Using Double Embeddings and Cross-Branch Attention Networks.
    Yuan L; Yang Y
    Front Genet; 2020; 11():632861. PubMed ID: 33552144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-binding protein recognition based on multi-view deep feature and multi-label learning.
    Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAResNet: self-attention residual network for predicting DNA-protein binding.
    Shen LC; Liu Y; Song J; Yu DJ
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33837387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adapt-Kcr: a novel deep learning framework for accurate prediction of lysine crotonylation sites based on learning embedding features and attention architecture.
    Li Z; Fang J; Wang S; Zhang L; Chen Y; Pian C
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling aspects of the language of life through transfer-learning protein sequences.
    Heinzinger M; Elnaggar A; Wang Y; Dallago C; Nechaev D; Matthes F; Rost B
    BMC Bioinformatics; 2019 Dec; 20(1):723. PubMed ID: 31847804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KDeep: a new memory-efficient data extraction method for accurately predicting DNA/RNA transcription factor binding sites.
    Akbari Rokn Abadi S; Tabatabaei S; Koohi S
    J Transl Med; 2023 Oct; 21(1):727. PubMed ID: 37845681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Embeddings from Multiple Protein Language Models to Improve Protein
    Pokharel S; Pratyush P; Ismail HD; Ma J; Kc DB
    Int J Mol Sci; 2023 Nov; 24(21):. PubMed ID: 37958983
    [No Abstract]   [Full Text] [Related]  

  • 20. Alignment-free metal ion-binding site prediction from protein sequence through pretrained language model and multi-task learning.
    Yuan Q; Chen S; Wang Y; Zhao H; Yang Y
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36274238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.