These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38349253)

  • 1. Polymer-Assisted 3D Printing of Inductor Cores.
    Luo Z; Yue Q; Li X; Zhu Y; Liu X; Fielding LA
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10764-10773. PubMed ID: 38349253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single Additive Enables 3D Printing of Highly Loaded Iron Oxide Suspensions.
    Hodaei A; Akhlaghi O; Khani N; Aytas T; Sezer D; Tatli B; Menceloglu YZ; Koc B; Akbulut O
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9873-9881. PubMed ID: 29474786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing.
    Teoh XY; Zhang B; Belton P; Chan SY; Qi S
    Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures.
    Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK
    Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printable, lightweight, and electrically conductive metal inks based on evaporable emulsion templates jammed with natural rheology modifiers.
    Young Ryu S; Kwak C; Kim J; Kim S; Cho H; Lee J
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):758-767. PubMed ID: 36029590
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable, thermo-responsive, self-healing, graphene oxide containing self-assembled hydrogels formed from block copolymer wormlike micelles.
    Yue Q; Luo Z; Li X; Fielding LA
    Soft Matter; 2023 Aug; 19(34):6513-6524. PubMed ID: 37584171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formulation of Screen-Printable Cu Molecular Ink for Conductive/Flexible/Solderable Cu Traces.
    Deore B; Paquet C; Kell AJ; Lacelle T; Liu X; Mozenson O; Lopinski G; Brzezina G; Guo C; Lafrenière S; Malenfant PRL
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38880-38894. PubMed ID: 31550883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NiTi-Nb micro-trusses fabricated via extrusion-based 3D-printing of powders and transient-liquid-phase sintering.
    Taylor SL; Ibeh AJ; Jakus AE; Shah RN; Dunand DC
    Acta Biomater; 2018 Aug; 76():359-370. PubMed ID: 29890266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Printed Nitrogen-Doped Thick Carbon Architectures for Supercapacitor: Ink Rheology and Electrochemical Performance.
    Zhou G; Li MC; Liu C; Liu C; Li Z; Mei C
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206320. PubMed ID: 36748294
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colloidal oxide nanoparticle inks for micrometer-resolution additive manufacturing of three-dimensional gas sensors.
    Chen H; Min X; Hui Y; Qin W; Zhang B; Yao Y; Xing W; Zhang W; Zhou N
    Mater Horiz; 2022 Feb; 9(2):764-771. PubMed ID: 34889925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications, fluid mechanics, and colloidal science of carbon-nanotube-based 3D printable inks.
    Zhao B; Sivasankar VS; Subudhi SK; Sinha S; Dasgupta A; Das S
    Nanoscale; 2022 Oct; 14(40):14858-14894. PubMed ID: 36196967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printable conductive inks used for the fabrication of electronics: an overview.
    Dimitriou E; Michailidis N
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 33735843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal spiral inductor using 3D printed shape memory kirigami.
    Kim Y; Phon R; Jeong H; Kim Y; Lim S
    Sci Rep; 2022 Dec; 12(1):22246. PubMed ID: 36564548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics.
    Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforced 3D Composite Structures of γ-, α-Al
    Ramírez C; Belmonte M; Miranzo P; Osendi MI
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33921950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Characterizations of Novel Aqueous-Based Ceramic Inks for Inkjet Printing.
    Li H; Yang L; Li F; Xian Q
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Introduction of Chalcogenide Glasses to Additive Manufacturing: Nanoparticle Ink Formulation, Inkjet Printing, and Phase Change Devices Fabrication.
    Ahmed Simon A; Badamchi B; Subbaraman H; Sakaguchi Y; Jones L; Kunold H; J van Rooyen I; Mitkova M
    Sci Rep; 2021 Jul; 11(1):14311. PubMed ID: 34253761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.