These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 38349416)

  • 21. Deep-learning-based reconstruction of T2-weighted magnetic resonance imaging of the prostate accelerated by compressed sensing provides improved image quality at half the acquisition time.
    Jurka M; Macova I; Wagnerova M; Capoun O; Jakubicek R; Ourednicek P; Lambert L; Burgetova A
    Quant Imaging Med Surg; 2024 May; 14(5):3534-3543. PubMed ID: 38720867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accelerated T2-weighted MRI of the liver at 3 T using a single-shot technique with deep learning-based image reconstruction: impact on the image quality and lesion detection.
    Ginocchio LA; Smereka PN; Tong A; Prabhu V; Nickel D; Arberet S; Chandarana H; Shanbhogue KP
    Abdom Radiol (NY); 2023 Jan; 48(1):282-290. PubMed ID: 36171342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Learning Accelerated Image Reconstruction of Fluid-Attenuated Inversion Recovery Sequence in Brain Imaging: Reduction of Acquisition Time and Improvement of Image Quality.
    Estler A; Hauser TK; Mengel A; Brunnée M; Zerweck L; Richter V; Zuena M; Schuhholz M; Ernemann U; Gohla G
    Acad Radiol; 2024 Jan; 31(1):180-186. PubMed ID: 37280126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Speeding Up and Improving Image Quality in Glioblastoma MRI Protocol by Deep Learning Image Reconstruction.
    Gohla G; Hauser TK; Bombach P; Feucht D; Estler A; Bornemann A; Zerweck L; Weinbrenner E; Ernemann U; Ruff C
    Cancers (Basel); 2024 May; 16(10):. PubMed ID: 38791906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast T2-Weighted Imaging With Deep Learning-Based Reconstruction: Evaluation of Image Quality and Diagnostic Performance in Patients Undergoing Radical Prostatectomy.
    Park JC; Park KJ; Park MY; Kim MH; Kim JK
    J Magn Reson Imaging; 2022 Jun; 55(6):1735-1744. PubMed ID: 34773449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Assessment of image quality and diagnostic accuracy for cervical spondylosis using T2w-STIR sequence with a deep learning-based reconstruction approach.
    Tao Q; Wang K; Wen B; Kang Y; Dang J; Sun J; Niu X; Zhang M; Liu Z; Wang W; Zhang Y; Cheng J
    Eur Spine J; 2024 Aug; 33(8):2982-2996. PubMed ID: 39007984
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shortening Acquisition Time and Improving Image Quality for Pelvic MRI Using Deep Learning Reconstruction for Diffusion-Weighted Imaging at 1.5 T.
    Herrmann J; Benkert T; Brendlin A; Gassenmaier S; Hölldobler T; Maennlin S; Almansour H; Lingg A; Weiland E; Afat S
    Acad Radiol; 2024 Mar; 31(3):921-928. PubMed ID: 37500416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning reconstruction for 1.5 T cervical spine MRI: effect on interobserver agreement in the evaluation of degenerative changes.
    Yasaka K; Tanishima T; Ohtake Y; Tajima T; Akai H; Ohtomo K; Abe O; Kiryu S
    Eur Radiol; 2022 Sep; 32(9):6118-6125. PubMed ID: 35348861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep learning denoising reconstruction enables faster T2-weighted FLAIR sequence acquisition with satisfactory image quality.
    Brain ME; Amukotuwa S; Bammer R
    J Med Imaging Radiat Oncol; 2024 Jun; 68(4):377-384. PubMed ID: 38577926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imaging of the degenerative spine using a sagittal T2-weighted DIXON turbo spin-echo sequence.
    Sollmann N; Mönch S; Riederer I; Zimmer C; Baum T; Kirschke JS
    Eur J Radiol; 2020 Oct; 131():109204. PubMed ID: 32801054
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultra-High-Resolution T2-Weighted PROPELLER MRI of the Rectum With Deep Learning Reconstruction: Assessment of Image Quality and Diagnostic Performance.
    Matsumoto S; Tsuboyama T; Onishi H; Fukui H; Honda T; Wakayama T; Wang X; Matsui T; Nakamoto A; Ota T; Kiso K; Osawa K; Tomiyama N
    Invest Radiol; 2024 Jul; 59(7):479-488. PubMed ID: 37975732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of deep learning-based image reconstruction in MR imaging of the shoulder joint to improve image quality and reduce scan time.
    Kaniewska M; Deininger-Czermak E; Getzmann JM; Wang X; Lohezic M; Guggenberger R
    Eur Radiol; 2023 Mar; 33(3):1513-1525. PubMed ID: 36166084
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Image Quality and Diagnostic Performance of Accelerated 2D Hip MRI with Deep Learning Reconstruction Based on a Deep Iterative Hierarchical Network.
    Herrmann J; Afat S; Gassenmaier S; Koerzdoerfer G; Lingg A; Almansour H; Nickel D; Werner S
    Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892062
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acquisition time reduction of diffusion-weighted liver imaging using deep learning image reconstruction.
    Afat S; Herrmann J; Almansour H; Benkert T; Weiland E; Hölldobler T; Nikolaou K; Gassenmaier S
    Diagn Interv Imaging; 2023 Apr; 104(4):178-184. PubMed ID: 36787419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Learning-reconstructed Parallel Accelerated Imaging for Knee MRI.
    Lee SM; Kim M; Park C; Lee D; Kim KS; Jeong HS; Choi MH
    Curr Med Imaging; 2024; 20():e240523217293. PubMed ID: 37226797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Feasibility and clinical usefulness of deep learning-accelerated MRI for acute painful fracture patients wearing a splint: A prospective comparative study.
    Roh S; Park JI; Kim GY; Yoo HJ; Nickel D; Koerzdoerfer G; Sung J; Oh J; Chae HD; Hong SH; Choi JY
    PLoS One; 2023; 18(6):e0287903. PubMed ID: 37379272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Usefulness of Breath-Hold Fat-Suppressed T2-Weighted Images With Deep Learning-Based Reconstruction of the Liver: Comparison to Conventional Free-Breathing Turbo Spin Echo.
    Ichinohe F; Oyama K; Yamada A; Hayashihara H; Adachi Y; Kitoh Y; Kanki Y; Maruyama K; Nickel MD; Fujinaga Y
    Invest Radiol; 2023 Jun; 58(6):373-379. PubMed ID: 36728880
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accelerated High-Resolution Deep Learning Reconstruction Turbo Spin Echo MRI of the Knee at 7 T.
    Marth AA; von Deuster C; Sommer S; Feuerriegel GC; Goller SS; Sutter R; Nanz D
    Invest Radiol; 2024 Jul; ():. PubMed ID: 38960863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep Learning Super-Resolution Reconstruction for Fast and Motion-Robust T2-weighted Prostate MRI.
    Bischoff LM; Peeters JM; Weinhold L; Krausewitz P; Ellinger J; Katemann C; Isaak A; Weber OM; Kuetting D; Attenberger U; Pieper CC; Sprinkart AM; Luetkens JA
    Radiology; 2023 Sep; 308(3):e230427. PubMed ID: 37750774
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast T2-weighted liver MRI: Image quality and solid focal lesions conspicuity using a deep learning accelerated single breath-hold HASTE fat-suppressed sequence.
    Mulé S; Kharrat R; Zerbib P; Massire A; Nickel MD; Ambarki K; Reizine E; Baranes L; Zegai B; Pigneur F; Kobeiter H; Luciani A
    Diagn Interv Imaging; 2022 Oct; 103(10):479-485. PubMed ID: 35597761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.