These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38349626)

  • 1. Discovering novel halide perovskite alloys using multi-fidelity machine learning and genetic algorithm.
    Yang J; Manganaris P; Mannodi-Kanakkithodi A
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38349626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of novel halide perovskites for photocatalytic water splitting using multi-fidelity machine learning.
    Biswas M; Desai R; Mannodi-Kanakkithodi A
    Phys Chem Chem Phys; 2024 Sep; 26(35):23177-23188. PubMed ID: 39189633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bulk and surface DFT investigations of inorganic halide perovskites screened using machine learning and materials property databases.
    Jain D; Chaube S; Khullar P; Goverapet Srinivasan S; Rai B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19423-19436. PubMed ID: 31460545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optoelectronic performance of perovskite Cs
    Qi F; Lv X; Song J; Fu X; Meng L; Lu CZ
    Phys Chem Chem Phys; 2023 Apr; 25(16):11484-11492. PubMed ID: 37039011
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning for Halide Perovskite Materials ABX
    Alhashmi A; Kanoun MB; Goumri-Said S
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting band gaps of ABN
    Ghosh S; Chowdhury J
    RSC Adv; 2024 Feb; 14(9):6385-6397. PubMed ID: 38380242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites.
    Ren C; Wu Y; Zou J; Cai B
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated design of promising mixed lead-free double halide organic-inorganic perovskites for photovoltaics using machine learning.
    Wu Y; Lu S; Ju MG; Zhou Q; Wang J
    Nanoscale; 2021 Jul; 13(28):12250-12259. PubMed ID: 34241606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoelectrochemical Properties, Machine Learning, and Symbolic Regression for Molecularly Engineered Halide Perovskite Materials in Water.
    Pan Z; Zhou Y; Zhang L
    ACS Appl Mater Interfaces; 2022 Feb; 14(7):9933-9943. PubMed ID: 35147024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-fidelity machine learning for predicting bandgaps of nonlinear optical crystals.
    Yu Z; Xue P; Xie BB; Shen L; Fang WH
    Phys Chem Chem Phys; 2024 Jun; 26(22):16378-16387. PubMed ID: 38805360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pencil-and-paper method for elucidating halide double perovskite band structures.
    Slavney AH; Connor BA; Leppert L; Karunadasa HI
    Chem Sci; 2019 Dec; 10(48):11041-11053. PubMed ID: 32190254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandgap lowering in mixed alloys of Cs
    Dai S; Gan X; Li K; Huang Q; Guo L; Liu H
    Phys Chem Chem Phys; 2023 Nov; 25(45):30993-31002. PubMed ID: 37938030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density Functional Theory - Machine Learning Approach to Analyze the Bandgap of Elemental Halide Perovskites and Ruddlesden-Popper Phases.
    Allam O; Holmes C; Greenberg Z; Kim KC; Jang SS
    Chemphyschem; 2018 Oct; 19(19):2559-2565. PubMed ID: 29928788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams.
    Rossignol H; Minotakis M; Cobelli M; Sanvito S
    J Chem Inf Model; 2024 Mar; 64(6):1828-1840. PubMed ID: 38271693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defect-Induced Band-Edge Reconstruction of a Bismuth-Halide Double Perovskite for Visible-Light Absorption.
    Slavney AH; Leppert L; Bartesaghi D; Gold-Parker A; Toney MF; Savenije TJ; Neaton JB; Karunadasa HI
    J Am Chem Soc; 2017 Apr; 139(14):5015-5018. PubMed ID: 28353345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composition-Controlled Synthesis of Hybrid Perovskite Nanoparticles by Ionic Metathesis: Bandgap Engineering Studies from Experiments and Theoretical Calculations.
    Roy M; Vikram ; Banerjee S; Mitra A; Alam A; Aslam M
    Chemistry; 2019 Jul; 25(42):9892-9901. PubMed ID: 30868665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning for impurity charge-state transition levels in semiconductors from elemental properties using multi-fidelity datasets.
    Polak MP; Jacobs R; Mannodi-Kanakkithodi A; Chan MKY; Morgan D
    J Chem Phys; 2022 Mar; 156(11):114110. PubMed ID: 35317590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dataset of theoretical multinary perovskite oxides.
    Bare ZJL; Morelock RJ; Musgrave CB
    Sci Data; 2023 Apr; 10(1):244. PubMed ID: 37117319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steric engineering of metal-halide perovskites with tunable optical band gaps.
    Filip MR; Eperon GE; Snaith HJ; Giustino F
    Nat Commun; 2014 Dec; 5():5757. PubMed ID: 25502506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dimension-Controlled Synthesis of Hybrid-Mixed Halide Perovskites for Solar Cell Application.
    Ghosh T; Gupta M; Nanda BRK; Shankar K; Pradhan D
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43909-43924. PubMed ID: 37694832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.