These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38349735)

  • 1. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks.
    Zhou S; Liu T; Strømme M; Xu C
    Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318387. PubMed ID: 38349735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Electrodeposition of Electrically Conducting Ni
    Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A
    Small; 2024 Sep; 20(36):e2401509. PubMed ID: 38698603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application.
    Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR
    Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of a conductive Ni
    Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ
    Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing.
    Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M
    Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabricating Large-Area Thin Films of 2D Conductive Metal-Organic Frameworks.
    Jeong H; Park G; Jeon J; Park SS
    Acc Chem Res; 2024 Aug; 57(16):2336-2346. PubMed ID: 39073835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air/liquid interfacial formation process of conductive metal-organic framework nanosheets.
    Ohata T; Nomoto A; Watanabe T; Hirosawa I; Makita T; Takeya J; Makiura R
    J Colloid Interface Sci; 2023 Dec; 651():769-784. PubMed ID: 37336654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge Transport in Zirconium-Based Metal-Organic Frameworks.
    Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT
    Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Advanced Conductive Metal-Organic Frameworks: Precise Synthesis, Electrochemical Energy Storage Applications, and Future Challenges.
    Xu G; Zhu C; Gao G
    Small; 2022 Nov; 18(44):e2203140. PubMed ID: 36050887
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance Electrochemical Actuator under an Ultralow Driving Voltage with a Mixed Electronic-Ionic Conductive Metal-Organic Framework.
    Li Y; Yu P; Ma W; Mao L
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):56158-56166. PubMed ID: 37976422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conductive Ni
    Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W
    Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revealing Ion Adsorption and Charging Mechanisms in Layered Metal-Organic Framework Supercapacitors with Solid-State Nuclear Magnetic Resonance.
    Balhatchet CJ; Gittins JW; Shin SJ; Ge K; Liu X; Trisukhon T; Sharma S; Kress T; Taberna PL; Simon P; Walsh A; Forse AC
    J Am Chem Soc; 2024 Aug; 146(33):23171-23181. PubMed ID: 39133641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.
    Miner EM; Fukushima T; Sheberla D; Sun L; Surendranath Y; Dincă M
    Nat Commun; 2016 Mar; 7():10942. PubMed ID: 26952523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductive Metal-Organic Frameworks for Supercapacitors.
    Niu L; Wu T; Chen M; Yang L; Yang J; Wang Z; Kornyshev AA; Jiang H; Bi S; Feng G
    Adv Mater; 2022 Dec; 34(52):e2200999. PubMed ID: 35358341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks.
    Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC
    J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An
    Zhang Z; Dell'Angelo D; Momeni MR; Shi Y; Shakib FA
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25270-25279. PubMed ID: 34015222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Mediated Hydrogenic Defects in Two-Dimensional Electrically Conductive Metal-Organic Frameworks.
    Debela TT; Yang MC; Hendon CH
    J Am Chem Soc; 2023 May; 145(20):11387-11391. PubMed ID: 37141540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H
    Wu X; Tian X; Zhang W; Peng X; Zhou S; Buenconsejo PJS; Li Y; Xiao S; Tao J; Zhang M; Yuan H
    Angew Chem Int Ed Engl; 2024 Aug; ():e202410411. PubMed ID: 39187431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Highly Conductive MOF of Graphene Analogue Ni
    Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W
    Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing the Potential of Electrically Conductive MOFs.
    Pham HTB; Choi JY; Stodolka M; Park J
    Acc Chem Res; 2024 Jan; ():. PubMed ID: 38294773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.