These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 38349883)
1. Weakening warming on spring freeze-thaw cycle caused greening Earth's third pole. Li J; Wu C; Zhang Y; Peñuelas J; Liu L; Ge Q Proc Natl Acad Sci U S A; 2024 Feb; 121(8):e2319581121. PubMed ID: 38349883 [TBL] [Abstract][Full Text] [Related]
2. The start of frozen dates over northern permafrost regions with the changing climate. Li J; Wu C; Peñuelas J; Ran Y; Zhang Y Glob Chang Biol; 2023 Aug; 29(16):4556-4568. PubMed ID: 37120816 [TBL] [Abstract][Full Text] [Related]
3. Vegetation green-up date is more sensitive to permafrost degradation than climate change in spring across the northern permafrost region. Wang J; Liu D Glob Chang Biol; 2022 Feb; 28(4):1569-1582. PubMed ID: 34854170 [TBL] [Abstract][Full Text] [Related]
4. Annual ecosystem respiration is resistant to changes in freeze-thaw periods in semi-arid permafrost. Wang Q; Lv W; Li B; Zhou Y; Jiang L; Piao S; Wang Y; Zhang L; Meng F; Liu P; Hong H; Li Y; Dorji T; Luo C; Zhang Z; Ciais P; Peñuelas J; Kardol P; Zhou H; Wang S Glob Chang Biol; 2020 Apr; 26(4):2630-2641. PubMed ID: 31883193 [TBL] [Abstract][Full Text] [Related]
5. Divergent Trajectory of Soil Autotrophic and Heterotrophic Respiration upon Permafrost Thaw. Wang G; Chen L; Zhang D; Qin S; Peng Y; Yang G; Wang J; Yu J; Wei B; Liu Y; Li Q; Kang L; Wang Y; Yang Y Environ Sci Technol; 2022 Jul; 56(14):10483-10493. PubMed ID: 35748652 [TBL] [Abstract][Full Text] [Related]
6. Sedimentary organic carbon storage of thermokarst lakes and ponds across Tibetan permafrost region. Wei Z; Du Z; Wang L; Zhong W; Lin J; Xu Q; Xiao C Sci Total Environ; 2022 Jul; 831():154761. PubMed ID: 35339557 [TBL] [Abstract][Full Text] [Related]
7. Polar amplification comparison among Earth's three poles under different socioeconomic scenarios from CMIP6 surface air temperature. Xie A; Zhu J; Kang S; Qin X; Xu B; Wang Y Sci Rep; 2022 Oct; 12(1):16548. PubMed ID: 36192431 [TBL] [Abstract][Full Text] [Related]
8. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Chen H; Zhu Q; Peng C; Wu N; Wang Y; Fang X; Gao Y; Zhu D; Yang G; Tian J; Kang X; Piao S; Ouyang H; Xiang W; Luo Z; Jiang H; Song X; Zhang Y; Yu G; Zhao X; Gong P; Yao T; Wu J Glob Chang Biol; 2013 Oct; 19(10):2940-55. PubMed ID: 23744573 [TBL] [Abstract][Full Text] [Related]
9. Higher temperature sensitivity of retrogressive thaw slump activity in the Arctic compared to the Third Pole. Liu Y; Qiu H; Kamp U; Wang N; Wang J; Huang C; Tang B Sci Total Environ; 2024 Mar; 914():170007. PubMed ID: 38219993 [TBL] [Abstract][Full Text] [Related]
10. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. Yuan L; Zhao L; Li R; Hu G; Du E; Qiao Y; Ma L Sci Total Environ; 2020 Apr; 712():136392. PubMed ID: 31931221 [TBL] [Abstract][Full Text] [Related]
11. Projected changes in soil freeze depth and their eco-hydrological impacts over the Tibetan Plateau during the 21st century. Li H; Pan X; Peng X; Washakh RMA; Zheng M; Nie X Sci Total Environ; 2023 Dec; 905():167074. PubMed ID: 37714360 [TBL] [Abstract][Full Text] [Related]
12. Spatio-temporal variation in soil thermal conductivity during the freeze-thaw period in the permafrost of the Qinghai-Tibet Plateau in 1980-2020. Wenhao L; Ren L; Tonghua W; Xiaoqian S; Xiaodong W; Guojie H; Lin Z; Jimin Y; Dong W; Yao X; Jianzong S; Junjie M; Shenning W; Yongping Q Sci Total Environ; 2024 Feb; 913():169654. PubMed ID: 38163600 [TBL] [Abstract][Full Text] [Related]
13. Growing-season warming and winter soil freeze/thaw cycles increase transpiration in a northern hardwood forest. Harrison JL; Sanders-DeMott R; Reinmann AB; Sorensen PO; Phillips NG; Templer PH Ecology; 2020 Nov; 101(11):e03173. PubMed ID: 32852804 [TBL] [Abstract][Full Text] [Related]
14. Experimentally increased nutrient availability at the permafrost thaw front selectively enhances biomass production of deep-rooting subarctic peatland species. Keuper F; Dorrepaal E; van Bodegom PM; van Logtestijn R; Venhuizen G; van Hal J; Aerts R Glob Chang Biol; 2017 Oct; 23(10):4257-4266. PubMed ID: 28675586 [TBL] [Abstract][Full Text] [Related]
15. Soil Microbes Trade-Off Biogeochemical Cycling for Stress Tolerance Traits in Response to Year-Round Climate Change. Garcia MO; Templer PH; Sorensen PO; Sanders-DeMott R; Groffman PM; Bhatnagar JM Front Microbiol; 2020; 11():616. PubMed ID: 32477275 [TBL] [Abstract][Full Text] [Related]
17. Soil freeze-thaw cycles affect spring phenology by changing phenological sensitivity in the Northern Hemisphere. Li T; Fu B; Lü Y; Du C; Zhao Z; Wang F; Gao G; Wu X Sci Total Environ; 2024 Mar; 914():169963. PubMed ID: 38215850 [TBL] [Abstract][Full Text] [Related]
18. Sensitivity of soil freeze/thaw dynamics to environmental conditions at different spatial scales in the central Tibetan Plateau. Jiang H; Yi Y; Zhang W; Yang K; Chen D Sci Total Environ; 2020 Sep; 734():139261. PubMed ID: 32454333 [TBL] [Abstract][Full Text] [Related]
19. Effects of the freeze-thaw cycle on potential evapotranspiration in the permafrost regions of the Qinghai-Tibet Plateau, China. Liu X; Yang W; Zhao H; Wang Y; Wang G Sci Total Environ; 2019 Oct; 687():257-266. PubMed ID: 31207515 [TBL] [Abstract][Full Text] [Related]