These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 38350189)
1. A transformer-based diffusion probabilistic model for heart rate and blood pressure forecasting in Intensive Care Unit. Chang P; Li H; Quan SF; Lu S; Wung SF; Roveda J; Li A Comput Methods Programs Biomed; 2024 Apr; 246():108060. PubMed ID: 38350189 [TBL] [Abstract][Full Text] [Related]
2. Vital Signs Prediction for COVID-19 Patients in ICU. Youssef Ali Amer A; Wouters F; Vranken J; Dreesen P; de Korte-de Boer D; van Rosmalen F; van Bussel BCT; Smit-Fun V; Duflot P; Guiot J; van der Horst ICC; Mesotten D; Vandervoort P; Aerts JM; Vanrumste B Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884136 [TBL] [Abstract][Full Text] [Related]
3. Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit. Yoon JH; Jeanselme V; Dubrawski A; Hravnak M; Pinsky MR; Clermont G Crit Care; 2020 Nov; 24(1):661. PubMed ID: 33234161 [TBL] [Abstract][Full Text] [Related]
4. Bayesian Gaussian processes for identifying the deteriorating patient. Colopy GW; Pimentel MA; Roberts SJ; Clifton DA Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5311-5314. PubMed ID: 28269459 [TBL] [Abstract][Full Text] [Related]
5. [Prediction of intensive care unit readmission for critically ill patients based on ensemble learning]. Lin Y; Wu JY; Lin K; Hu YH; Kong GL Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):566-572. PubMed ID: 34145862 [TBL] [Abstract][Full Text] [Related]
6. Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation. Alghatani K; Ammar N; Rezgui A; Shaban-Nejad A JMIR Med Inform; 2021 May; 9(5):e21347. PubMed ID: 33949961 [TBL] [Abstract][Full Text] [Related]
7. Circadian rhythms of vital signs are associated with in-hospital mortality in critically ill patients: A retrospective observational study. Yang Z; Xie X; Zhang X; Li L; Bai R; Long H; Ma Y; Hui Z; Qi Y; Chen J Chronobiol Int; 2023 Mar; 40(3):262-271. PubMed ID: 36597185 [TBL] [Abstract][Full Text] [Related]
8. End-tidal carbon dioxide measured at emergency department triage outperforms standard triage vital signs in predicting in-hospital mortality and intensive care unit admission. Ladde JG; Miller S; Chin K; Feffer C; Gulenay G; Kepple K; Hunter C; Thundiyil JG; Papa L Acad Emerg Med; 2023 Aug; 30(8):832-841. PubMed ID: 36802204 [TBL] [Abstract][Full Text] [Related]
9. Short-term vital parameter forecasting in the intensive care unit: A benchmark study leveraging data from patients after cardiothoracic surgery. Hinrichs N; Roeschl T; Lanmueller P; Balzer F; Eickhoff C; O'Brien B; Falk V; Meyer A PLOS Digit Health; 2024 Sep; 3(9):e0000598. PubMed ID: 39264979 [TBL] [Abstract][Full Text] [Related]
10. How New Mexico Leveraged a COVID-19 Case Forecasting Model to Preemptively Address the Health Care Needs of the State: Quantitative Analysis. Castro LA; Shelley CD; Osthus D; Michaud I; Mitchell J; Manore CA; Del Valle SY JMIR Public Health Surveill; 2021 Jun; 7(6):e27888. PubMed ID: 34003763 [TBL] [Abstract][Full Text] [Related]
11. Towards development of alert thresholds for clinical deterioration using continuous predictive analytics monitoring. Keim-Malpass J; Clark MT; Lake DE; Moorman JR J Clin Monit Comput; 2020 Aug; 34(4):797-804. PubMed ID: 31327101 [TBL] [Abstract][Full Text] [Related]
12. A Novel Continuous Real-Time Vital Signs Viewer for Intensive Care Units: Design and Evaluation Study. Yang S; Galvagno S; Badjatia N; Stein D; Teeter W; Scalea T; Shackelford S; Fang R; Miller C; Hu P; JMIR Hum Factors; 2024 Jan; 11():e46030. PubMed ID: 38180791 [TBL] [Abstract][Full Text] [Related]
13. Early hospital mortality prediction of intensive care unit patients using an ensemble learning approach. Awad A; Bader-El-Den M; McNicholas J; Briggs J Int J Med Inform; 2017 Dec; 108():185-195. PubMed ID: 29132626 [TBL] [Abstract][Full Text] [Related]
14. An exploratory data quality analysis of time series physiologic signals using a large-scale intensive care unit database. Afshar AS; Li Y; Chen Z; Chen Y; Lee JH; Irani D; Crank A; Singh D; Kanter M; Faraday N; Kharrazi H JAMIA Open; 2021 Jul; 4(3):ooab057. PubMed ID: 34350392 [TBL] [Abstract][Full Text] [Related]
15. Day-to-day progression of vital-sign circadian rhythms in the intensive care unit. Davidson S; Villarroel M; Harford M; Finnegan E; Jorge J; Young D; Watkinson P; Tarassenko L Crit Care; 2021 Apr; 25(1):156. PubMed ID: 33888129 [TBL] [Abstract][Full Text] [Related]
16. Using ECG signals for hypotensive episode prediction in trauma patients. Rosenfeld N; Last M Comput Methods Programs Biomed; 2022 Aug; 223():106955. PubMed ID: 35772233 [TBL] [Abstract][Full Text] [Related]
17. Continuous time recurrent neural networks: Overview and benchmarking at forecasting blood glucose in the intensive care unit. Fitzgerald O; Perez-Concha O; Gallego-Luxan B; Metke-Jimenez A; Rudd L; Jorm L J Biomed Inform; 2023 Oct; 146():104498. PubMed ID: 37699466 [TBL] [Abstract][Full Text] [Related]
18. Errors, Omissions, and Outliers in Hourly Vital Signs Measurements in Intensive Care. Maslove DM; Dubin JA; Shrivats A; Lee J Crit Care Med; 2016 Nov; 44(11):e1021-e1030. PubMed ID: 27509387 [TBL] [Abstract][Full Text] [Related]
19. Benchmarking Deep Learning Architectures for Predicting Readmission to the ICU and Describing Patients-at-Risk. Barbieri S; Kemp J; Perez-Concha O; Kotwal S; Gallagher M; Ritchie A; Jorm L Sci Rep; 2020 Jan; 10(1):1111. PubMed ID: 31980704 [TBL] [Abstract][Full Text] [Related]