These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 38350501)
1. Dual centrifugation as a novel and efficient method for the preparation of lipodisks. Ali S; Koehler JK; Silva L; Gedda L; Massing U; Edwards K Int J Pharm; 2024 Mar; 653():123894. PubMed ID: 38350501 [TBL] [Abstract][Full Text] [Related]
2. Optimization of lipodisk properties by modification of the extent and density of the PEG corona. Zetterberg MM; Ahlgren S; Agmo Hernández V; Parveen N; Edwards K J Colloid Interface Sci; 2016 Dec; 484():86-96. PubMed ID: 27592189 [TBL] [Abstract][Full Text] [Related]
3. Ratiometric co-encapsulation and co-delivery of doxorubicin and paclitaxel by tumor-targeted lipodisks for combination therapy of breast cancer. Feng C; Zhang H; Chen J; Wang S; Xin Y; Qu Y; Zhang Q; Ji W; Yamashita F; Rui M; Xu X Int J Pharm; 2019 Apr; 560():191-204. PubMed ID: 30769131 [TBL] [Abstract][Full Text] [Related]
4. Targeting lipodisks enable selective delivery of anticancer peptides to tumor cells. Ahlgren S; Reijmar K; Edwards K Nanomedicine; 2017 Oct; 13(7):2325-2328. PubMed ID: 28712916 [TBL] [Abstract][Full Text] [Related]
5. Characterizing and Controlling the Loading and Release of Cationic Amphiphilic Peptides onto and from PEG-Stabilized Lipodisks. Reijmar K; Edwards K; Andersson K; Agmo Hernández V Langmuir; 2016 Nov; 32(46):12091-12099. PubMed ID: 27788004 [TBL] [Abstract][Full Text] [Related]
6. Tumor-Targeted Delivery of the p53-Activating Peptide VIP116 with PEG-Stabilized Lipodisks. Lundsten S; Hernández VA; Gedda L; Sarén T; Brown CJ; Lane DP; Edwards K; Nestor M Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32325827 [TBL] [Abstract][Full Text] [Related]
7. Effect of gangliosides on structure and integrity of polyethylene glycol (PEG)-stabilized liposomes. Grad P; Gedda L; Edwards K J Colloid Interface Sci; 2020 Oct; 578():281-289. PubMed ID: 32531558 [TBL] [Abstract][Full Text] [Related]
8. A Systematic Approach for Liposome and Lipodisk Preclinical Formulation Development by Microfluidic Technology. Levy ES; Yu J; Estevez A; Mao J; Liu L; Torres E; Leung D; Yen CW AAPS J; 2021 Oct; 23(6):111. PubMed ID: 34651233 [TBL] [Abstract][Full Text] [Related]
9. Immobilized lipodisks as model membranes in high-throughput HPLC-MS analysis. Meiby E; Zetterberg MM; Ohlson S; Hernández VA; Edwards K Anal Bioanal Chem; 2013 May; 405(14):4859-69. PubMed ID: 23512190 [TBL] [Abstract][Full Text] [Related]
10. Selection and optimization of nano-formulation of P-glycoprotein inhibitor for reversal of doxorubicin resistance in COLO205 cells. Dash TK; Konkimalla VSB J Pharm Pharmacol; 2017 Jul; 69(7):834-843. PubMed ID: 28397291 [TBL] [Abstract][Full Text] [Related]
11. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Cui T; Zhang S; Sun H Oncol Rep; 2017 Feb; 37(2):1253-1260. PubMed ID: 28075466 [TBL] [Abstract][Full Text] [Related]
12. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Hadinoto K; Sundaresan A; Cheow WS Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180 [TBL] [Abstract][Full Text] [Related]
13. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Yuan JD; ZhuGe DL; Tong MQ; Lin MT; Xu XF; Tang X; Zhao YZ; Xu HL Artif Cells Nanomed Biotechnol; 2018; 46(sup1):302-313. PubMed ID: 29301415 [TBL] [Abstract][Full Text] [Related]
14. PEG-stabilized bilayer nanodisks as carriers for doxorubicin delivery. Zhang W; Sun J; Liu Y; Tao M; Ai X; Su X; Cai C; Tang Y; Feng Z; Yan X; Chen G; He Z Mol Pharm; 2014 Oct; 11(10):3279-90. PubMed ID: 24754897 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characteristics of lipid nanoemulsion formulations loaded with doxorubicin. Jiang SP; He SN; Li YL; Feng DL; Lu XY; Du YZ; Yu HY; Hu FQ; Yuan H Int J Nanomedicine; 2013; 8():3141-50. PubMed ID: 23990722 [TBL] [Abstract][Full Text] [Related]
16. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
17. Co-delivery of hydrophilic and hydrophobic drugs by micelles: a new approach using drug conjugated PEG-PCLNanoparticles. Danafar H; Rostamizadeh K; Davaran S; Hamidi M Drug Dev Ind Pharm; 2017 Nov; 43(11):1908-1918. PubMed ID: 28737462 [TBL] [Abstract][Full Text] [Related]
18. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Zhao X; Chen Q; Li Y; Tang H; Liu W; Yang X Eur J Pharm Biopharm; 2015 Jun; 93():27-36. PubMed ID: 25770771 [TBL] [Abstract][Full Text] [Related]
19. Tailoring the Lamellarity of Liposomes Prepared by Dual Centrifugation. Koehler JK; Gedda L; Wurster L; Schnur J; Edwards K; Heerklotz H; Massing U Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36840028 [TBL] [Abstract][Full Text] [Related]
20. Preparation and Evaluation of Doxorubicin-Loaded PLA-PEG-FA Copolymer Containing Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Cancer Treatment: Combination Therapy with Hyperthermia and Chemotherapy. Khaledian M; Nourbakhsh MS; Saber R; Hashemzadeh H; Darvishi MH Int J Nanomedicine; 2020; 15():6167-6182. PubMed ID: 32922000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]