These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 38350856)
1. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs. Hui TKL; Lo ICN; Wong KKW; Tsang CTT; Tsang LM BMC Microbiol; 2024 Feb; 24(1):57. PubMed ID: 38350856 [TBL] [Abstract][Full Text] [Related]
2. Comparative analysis of gut microbiome of mangrove brachyuran crabs revealed patterns of phylosymbiosis and codiversification. Tsang CTT; Hui TKL; Chung NM; Yuen WT; Tsang LM Mol Ecol; 2024 Jun; 33(12):e17377. PubMed ID: 38713089 [TBL] [Abstract][Full Text] [Related]
3. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling. Tongununui P; Kuriya Y; Murata M; Sawada H; Araki M; Nomura M; Morioka K; Ichie T; Ikejima K; Adachi K PLoS One; 2021; 16(12):e0261654. PubMed ID: 34972143 [TBL] [Abstract][Full Text] [Related]
4. Contribution of Aerobic Cellulolytic Gut Bacteria to Cellulose Digestion in Fifteen Coastal Grapsoid Crabs Underpins Potential for Mineralization of Mangrove Production. Lee CY; Lee SY Curr Microbiol; 2024 Jun; 81(8):224. PubMed ID: 38874676 [TBL] [Abstract][Full Text] [Related]
5. Interference competition as a key determinant for spatial distribution of mangrove crabs. Cannicci S; Fusi M; Cimó F; Dahdouh-Guebas F; Fratini S BMC Ecol; 2018 Feb; 18(1):8. PubMed ID: 29448932 [TBL] [Abstract][Full Text] [Related]
6. Nitrogen enrichment changed the biogeochemical role of sesarmid crabs by shifting their diets in tropical mangrove ecosystems. Gao X; Gaitan-Espitia JD; Lee SY Mar Pollut Bull; 2024 Apr; 201():116183. PubMed ID: 38412799 [TBL] [Abstract][Full Text] [Related]
7. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Bredon M; Dittmer J; Noël C; Moumen B; Bouchon D Microbiome; 2018 Sep; 6(1):162. PubMed ID: 30223906 [TBL] [Abstract][Full Text] [Related]
8. Endogenous cellulase production in the leaf litter foraging mangrove crab Parasesarma erythodactyla. Bui TH; Lee SY Comp Biochem Physiol B Biochem Mol Biol; 2015 Jan; 179():27-36. PubMed ID: 25242627 [TBL] [Abstract][Full Text] [Related]
9. Guaiacol oxidation activity of herbivorous land crabs, Chiromantes haematocheir and Chiromantes dehaani. Miyake K; Ura K; Chida S; Ueda Y; Baba Y; Kusube T; Yanai S J Biosci Bioeng; 2019 Sep; 128(3):316-322. PubMed ID: 30948188 [TBL] [Abstract][Full Text] [Related]
10. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Lazuka A; Auer L; O'Donohue M; Hernandez-Raquet G Biotechnol Biofuels; 2018; 11():284. PubMed ID: 30356893 [TBL] [Abstract][Full Text] [Related]
11. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Ni J; Tokuda G Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853 [TBL] [Abstract][Full Text] [Related]
12. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle Luo C; Li Y; Chen Y; Fu C; Long W; Xiao X; Liao H; Yang Y Biotechnol Biofuels; 2019; 12():70. PubMed ID: 30976320 [TBL] [Abstract][Full Text] [Related]
13. Does 'you are what you eat' apply to mangrove grapsid crabs? Bui TH; Lee SY PLoS One; 2014; 9(2):e89074. PubMed ID: 24551220 [TBL] [Abstract][Full Text] [Related]
14. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697 [TBL] [Abstract][Full Text] [Related]
15. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia. Robertson AI; Daniel PA Oecologia; 1989 Feb; 78(2):191-198. PubMed ID: 28312358 [TBL] [Abstract][Full Text] [Related]
16. Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda. Yang S; Deng W; Li G; Jin L; Huang Y; He Y; Wu D; Li D; Zhang A; Liu C; Li C; Zhang H; Xu H; Penttinen P; Zhao K; Zou L Environ Res; 2024 Mar; 245():118090. PubMed ID: 38163545 [TBL] [Abstract][Full Text] [Related]
17. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review. Rajeswari G; Jacob S; Chandel AK; Kumar V Microb Cell Fact; 2021 May; 20(1):107. PubMed ID: 34044834 [TBL] [Abstract][Full Text] [Related]
18. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications. Shi W; Xie S; Chen X; Sun S; Zhou X; Liu L; Gao P; Kyrpides NC; No EG; Yuan JS PLoS Genet; 2013; 9(1):e1003131. PubMed ID: 23326236 [TBL] [Abstract][Full Text] [Related]
19. A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets. Linton SM; Greenaway P J Comp Physiol B; 2007 Apr; 177(3):269-86. PubMed ID: 17279390 [TBL] [Abstract][Full Text] [Related]