BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 38350856)

  • 1. Metagenomic analysis of gut microbiome illuminates the mechanisms and evolution of lignocellulose degradation in mangrove herbivorous crabs.
    Hui TKL; Lo ICN; Wong KKW; Tsang CTT; Tsang LM
    BMC Microbiol; 2024 Feb; 24(1):57. PubMed ID: 38350856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of gut microbiome of mangrove brachyuran crabs revealed patterns of phylosymbiosis and codiversification.
    Tsang CTT; Hui TKL; Chung NM; Yuen WT; Tsang LM
    Mol Ecol; 2024 Jun; 33(12):e17377. PubMed ID: 38713089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mangrove crab intestine and habitat sediment microbiomes cooperatively work on carbon and nitrogen cycling.
    Tongununui P; Kuriya Y; Murata M; Sawada H; Araki M; Nomura M; Morioka K; Ichie T; Ikejima K; Adachi K
    PLoS One; 2021; 16(12):e0261654. PubMed ID: 34972143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of Aerobic Cellulolytic Gut Bacteria to Cellulose Digestion in Fifteen Coastal Grapsoid Crabs Underpins Potential for Mineralization of Mangrove Production.
    Lee CY; Lee SY
    Curr Microbiol; 2024 Jun; 81(8):224. PubMed ID: 38874676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interference competition as a key determinant for spatial distribution of mangrove crabs.
    Cannicci S; Fusi M; Cimó F; Dahdouh-Guebas F; Fratini S
    BMC Ecol; 2018 Feb; 18(1):8. PubMed ID: 29448932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen enrichment changed the biogeochemical role of sesarmid crabs by shifting their diets in tropical mangrove ecosystems.
    Gao X; Gaitan-Espitia JD; Lee SY
    Mar Pollut Bull; 2024 Apr; 201():116183. PubMed ID: 38412799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate.
    Bredon M; Dittmer J; Noël C; Moumen B; Bouchon D
    Microbiome; 2018 Sep; 6(1):162. PubMed ID: 30223906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous cellulase production in the leaf litter foraging mangrove crab Parasesarma erythodactyla.
    Bui TH; Lee SY
    Comp Biochem Physiol B Biochem Mol Biol; 2015 Jan; 179():27-36. PubMed ID: 25242627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guaiacol oxidation activity of herbivorous land crabs, Chiromantes haematocheir and Chiromantes dehaani.
    Miyake K; Ura K; Chida S; Ueda Y; Baba Y; Kusube T; Yanai S
    J Biosci Bioeng; 2019 Sep; 128(3):316-322. PubMed ID: 30948188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics.
    Lazuka A; Auer L; O'Donohue M; Hernandez-Raquet G
    Biotechnol Biofuels; 2018; 11():284. PubMed ID: 30356893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.
    Ni J; Tokuda G
    Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bamboo lignocellulose degradation by gut symbiotic microbiota of the bamboo snout beetle
    Luo C; Li Y; Chen Y; Fu C; Long W; Xiao X; Liao H; Yang Y
    Biotechnol Biofuels; 2019; 12():70. PubMed ID: 30976320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does 'you are what you eat' apply to mangrove grapsid crabs?
    Bui TH; Lee SY
    PLoS One; 2014; 9(2):e89074. PubMed ID: 24551220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation.
    Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z
    BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of crabs on litter processing in high intertidal mangrove forests in tropical Australia.
    Robertson AI; Daniel PA
    Oecologia; 1989 Feb; 78(2):191-198. PubMed ID: 28312358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reference gene catalog and metagenome-assembled genomes from the gut microbiome reveal the microbial composition, antibiotic resistome, and adaptability of a lignocellulose diet in the giant panda.
    Yang S; Deng W; Li G; Jin L; Huang Y; He Y; Wu D; Li D; Zhang A; Liu C; Li C; Zhang H; Xu H; Penttinen P; Zhao K; Zou L
    Environ Res; 2024 Mar; 245():118090. PubMed ID: 38163545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unlocking the potential of insect and ruminant host symbionts for recycling of lignocellulosic carbon with a biorefinery approach: a review.
    Rajeswari G; Jacob S; Chandel AK; Kumar V
    Microb Cell Fact; 2021 May; 20(1):107. PubMed ID: 34044834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative genomic analysis of the microbiome [corrected] of herbivorous insects reveals eco-environmental adaptations: biotechnology applications.
    Shi W; Xie S; Chen X; Sun S; Zhou X; Liu L; Gao P; Kyrpides NC; No EG; Yuan JS
    PLoS Genet; 2013; 9(1):e1003131. PubMed ID: 23326236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review of feeding and nutrition of herbivorous land crabs: adaptations to low quality plant diets.
    Linton SM; Greenaway P
    J Comp Physiol B; 2007 Apr; 177(3):269-86. PubMed ID: 17279390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting diet in brachyuran crabs using external morphology.
    Quezada-Villa K; Cannizzo ZJ; Carver J; Dunn RP; Fletcher LS; Kimball ME; McMullin AL; Orocu B; Pfirrmann BW; Pinkston E; Reese TC; Smith N; Stancil C; Toscano BJ; Griffen BD
    PeerJ; 2023; 11():e15224. PubMed ID: 37065690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.