BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 38350930)

  • 1. Deep learning segmentation of peri-sinus structures from structural magnetic resonance imaging: validation and normative ranges across the adult lifespan.
    Hett K; McKnight CD; Leguizamon M; Lindsey JS; Eisma JJ; Elenberger J; Stark AJ; Song AK; Aumann M; Considine CM; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2024 Feb; 21(1):15. PubMed ID: 38350930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan.
    Eisma JJ; McKnight CD; Hett K; Elenberger J; Han CJ; Song AK; Considine C; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2024 Feb; 21(1):21. PubMed ID: 38424598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning segmentation of the choroid plexus from structural magnetic resonance imaging (MRI): validation and normative ranges across the adult lifespan.
    Eisma JJ; McKnight CD; Hett K; Elenberger J; Song AK; Considine C; Claassen DO; Donahue MJ
    Res Sq; 2023 Sep; ():. PubMed ID: 37790534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parasagittal dural space and cerebrospinal fluid (CSF) flow across the lifespan in healthy adults.
    Hett K; McKnight CD; Eisma JJ; Elenberger J; Lindsey JS; Considine CM; Claassen DO; Donahue MJ
    Fluids Barriers CNS; 2022 Mar; 19(1):24. PubMed ID: 35313906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated olfactory bulb segmentation on high resolutional T2-weighted MRI.
    Estrada S; Lu R; Diers K; Zeng W; Ehses P; Stöcker T; Breteler MMB; Reuter M
    Neuroimage; 2021 Nov; 242():118464. PubMed ID: 34389442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial intelligence for automatic cerebral ventricle segmentation and volume calculation: a clinical tool for the evaluation of pediatric hydrocephalus.
    Quon JL; Han M; Kim LH; Koran ME; Chen LC; Lee EH; Wright J; Ramaswamy V; Lober RM; Taylor MD; Grant GA; Cheshier SH; Kestle JRW; Edwards MSB; Yeom KW
    J Neurosurg Pediatr; 2020 Dec; 27(2):131-138. PubMed ID: 33260138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Magnetic Resonance Image Segmentation of Spinal Structures at the L4-5 Level with Deep Learning: 3D Reconstruction of Lumbar Intervertebral Foramen.
    Chen T; Su ZH; Liu Z; Wang M; Cui ZF; Zhao L; Yang LJ; Zhang WC; Liu X; Liu J; Tan SY; Li SL; Feng QJ; Pang SM; Lu H
    Orthop Surg; 2022 Sep; 14(9):2256-2264. PubMed ID: 35979964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using deep learning convolutional neural networks to automatically perform cerebral aqueduct CSF flow analysis.
    Tsou CH; Cheng YC; Huang CY; Chen JH; Chen WH; Chai JW; Chen CC
    J Clin Neurosci; 2021 Aug; 90():60-67. PubMed ID: 34275582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel attention-fusion neural network for brain age estimation: Accuracy, generality, and interpretation with 16,705 healthy MRIs across lifespan.
    He S; Pereira D; David Perez J; Gollub RL; Murphy SN; Prabhu S; Pienaar R; Robertson RL; Ellen Grant P; Ou Y
    Med Image Anal; 2021 Aug; 72():102091. PubMed ID: 34038818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Convolutional Neural Network for Fully Automated Cerebellar Volumetry in Children in Comparison to Manual Segmentation and Developmental Trajectory of Cerebellar Volumes.
    Sobootian DJ; Bronzlik P; Spineli LM; Becker LS; Winther HB; Bueltmann E
    Cerebellum; 2024 Jun; 23(3):1074-1085. PubMed ID: 37833550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional Deep Convolutional Neural Networks for Automated Myocardial Scar Quantification in Hypertrophic Cardiomyopathy: A Multicenter Multivendor Study.
    Fahmy AS; Neisius U; Chan RH; Rowin EJ; Manning WJ; Maron MS; Nezafat R
    Radiology; 2020 Jan; 294(1):52-60. PubMed ID: 31714190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs.
    Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L
    Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deeply supervised 3D fully convolutional networks with group dilated convolution for automatic MRI prostate segmentation.
    Wang B; Lei Y; Tian S; Wang T; Liu Y; Patel P; Jani AB; Mao H; Curran WJ; Liu T; Yang X
    Med Phys; 2019 Apr; 46(4):1707-1718. PubMed ID: 30702759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semiautomated segmentation of hepatocellular carcinoma tumors with MRI using convolutional neural networks.
    Said D; Carbonell G; Stocker D; Hectors S; Vietti-Violi N; Bane O; Chin X; Schwartz M; Tabrizian P; Lewis S; Greenspan H; Jégou S; Schiratti JB; Jehanno P; Taouli B
    Eur Radiol; 2023 Sep; 33(9):6020-6032. PubMed ID: 37071167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.
    Lavdas I; Glocker B; Kamnitsas K; Rueckert D; Mair H; Sandhu A; Taylor SA; Aboagye EO; Rockall AG
    Med Phys; 2017 Oct; 44(10):5210-5220. PubMed ID: 28756622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors on dynamic contrast enhanced MRI.
    Rahimpour M; Saint Martin MJ; Frouin F; Akl P; Orlhac F; Koole M; Malhaire C
    Eur Radiol; 2023 Feb; 33(2):959-969. PubMed ID: 36074262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning pipeline for the automated segmentation of posterior limb of internal capsule in preterm neonates.
    Gruber N; Galijasevic M; Regodic M; Grams AE; Siedentopf C; Steiger R; Hammerl M; Haltmeier M; Gizewski ER; Janjic T
    Artif Intell Med; 2022 Oct; 132():102384. PubMed ID: 36207089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.