These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 38350988)

  • 1. A soft, scalable and adaptable multi-contact cuff electrode for targeted peripheral nerve modulation.
    Paggi V; Fallegger F; Serex L; Rizzo O; Galan K; Giannotti A; Furfaro I; Zinno C; Bernini F; Micera S; Lacour SP
    Bioelectron Med; 2024 Feb; 10(1):6. PubMed ID: 38350988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
    González-González MA; Kanneganti A; Joshi-Imre A; Hernandez-Reynoso AG; Bendale G; Modi R; Ecker M; Khurram A; Cogan SF; Voit WE; Romero-Ortega MI
    Sci Rep; 2018 Nov; 8(1):16390. PubMed ID: 30401906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
    Christie BP; Freeberg M; Memberg WD; Pinault GJC; Hoyen HA; Tyler DJ; Triolo RJ
    J Neuroeng Rehabil; 2017 Jul; 14(1):70. PubMed ID: 28693584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stretchable gold nanowire-based cuff electrodes for low-voltage peripheral nerve stimulation.
    Lienemann S; Zötterman J; Farnebo S; Tybrandt K
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33957608
    [No Abstract]   [Full Text] [Related]  

  • 5. A Hydrogel-Based Microfluidic Nerve Cuff for Neuromodulation of Peripheral Nerves.
    Thakur R; Aplin FP; Fridman GY
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM; Vetter C; Alhawwash A; Horn MR; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2085-2096. PubMed ID: 35971860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The foreign body response and morphometric changes associated with mesh-style peripheral nerve cuffs.
    Christensen MB; Tresco PA
    Acta Biomater; 2018 Feb; 67():79-86. PubMed ID: 29223703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an adaptable intrafascicular electrode (AIR) for selective nerve stimulation by model-based optimization.
    Ciotti F; Cimolato A; Valle G; Raspopovic S
    PLoS Comput Biol; 2023 May; 19(5):e1011184. PubMed ID: 37228174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and Low Cost Manufacturing of Cuff Electrodes.
    Flavin MT; Paul MA; Lim AS; Abdulhamed S; Lissandrello CA; Ajemian R; Lin SJ; Han J
    Front Neurosci; 2021; 15():628778. PubMed ID: 33664647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve.
    Elyahoodayan S; Larson C; Cobo AM; Meng E; Song D
    J Neurosci Methods; 2020 Apr; 336():108634. PubMed ID: 32068010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recording of electroneurograms from the nerves innervating the pancreas of a dog.
    Rozman J; Zorko B; Bunc M
    J Neurosci Methods; 2001 Dec; 112(2):155-62. PubMed ID: 11716950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.
    Kent AR; Grill WM
    J Neural Eng; 2013 Jun; 10(3):036010. PubMed ID: 23594706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully Customizable, Low-Cost, Multi-Contact Nerve Cuffs for Spatially Selective Neuromodulation.
    Riley M; Tala F; Johnson KJ; Johnson BC
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.
    Freeberg MJ; Stone MA; Triolo RJ; Tyler DJ
    J Neural Eng; 2017 Jun; 14(3):036022. PubMed ID: 28287078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis.
    Choi AQ; Cavanaugh JK; Durand DM
    IEEE Trans Biomed Eng; 2001 Feb; 48(2):165-72. PubMed ID: 11296872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of High Contact-Density, Flat-Interface Nerve Electrodes for Recording and Stimulation Applications.
    Dweiri YM; Stone MA; Tyler DJ; McCallum GA; Durand DM
    J Vis Exp; 2016 Oct; (116):. PubMed ID: 27768048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyimide cuff electrodes for peripheral nerve stimulation.
    Rodríguez FJ; Ceballos D; Schüttler M; Valero A; Valderrama E; Stieglitz T; Navarro X
    J Neurosci Methods; 2000 Jun; 98(2):105-18. PubMed ID: 10880824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of a Self-Curling Cuff with a Soft, Ionically Conducting Neural Interface.
    Thakur R; Nair AR; Jin A; Fridman GY
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3750-3753. PubMed ID: 31946690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment on selectivity of multi-contact cuff electrode for recording peripheral nerve signals using Fitzhugh-Nagumo model of nerve excitation.
    Taghipour-Farshi H; Frounchi J; Ahmadiasl N; Shahabi P; Salekzamani Y
    J Back Musculoskelet Rehabil; 2016 Nov; 29(4):749-756. PubMed ID: 26966830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes.
    Grill WM; Mortimer JT
    J Biomed Mater Res; 2000 May; 50(2):215-26. PubMed ID: 10679687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.