These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna. Marinica DC; Lourenço-Martins H; Aizpurua J; Borisov AG Nano Lett; 2013; 13(12):5972-8. PubMed ID: 24206447 [TBL] [Abstract][Full Text] [Related]
23. Real-time detection of electron tunnelling in a quantum dot. Lu W; Ji Z; Pfeiffer L; West KW; Rimberg AJ Nature; 2003 May; 423(6938):422-5. PubMed ID: 12761544 [TBL] [Abstract][Full Text] [Related]
24. Time-resolved investigation of coherently controlled electric currents at a metal surface. Güdde J; Rohleder M; Meier T; Koch SW; Höfer U Science; 2007 Nov; 318(5854):1287-91. PubMed ID: 18033880 [TBL] [Abstract][Full Text] [Related]
25. Photo-plasmonic effect as the hot electron generation mechanism. Akbari-Moghanjoughi M Sci Rep; 2023 Jan; 13(1):589. PubMed ID: 36631539 [TBL] [Abstract][Full Text] [Related]
26. Optical rectification and field enhancement in a plasmonic nanogap. Ward DR; Hüser F; Pauly F; Cuevas JC; Natelson D Nat Nanotechnol; 2010 Oct; 5(10):732-6. PubMed ID: 20852641 [TBL] [Abstract][Full Text] [Related]
27. Strong Interaction of Slow Electrons with Near-Field Light Visited from First Principles. Talebi N Phys Rev Lett; 2020 Aug; 125(8):080401. PubMed ID: 32909773 [TBL] [Abstract][Full Text] [Related]
28. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale. Colliex C; Kociak M; Stéphan O Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606 [TBL] [Abstract][Full Text] [Related]
29. Coherent interaction between free electrons and a photonic cavity. Wang K; Dahan R; Shentcis M; Kauffmann Y; Ben Hayun A; Reinhardt O; Tsesses S; Kaminer I Nature; 2020 Jun; 582(7810):50-54. PubMed ID: 32494081 [TBL] [Abstract][Full Text] [Related]
30. Quantum oscillations in a molecular magnet. Bertaina S; Gambarelli S; Mitra T; Tsukerblat B; Müller A; Barbara B Nature; 2008 May; 453(7192):203-6. PubMed ID: 18464738 [TBL] [Abstract][Full Text] [Related]
31. Enabling High Efficiency Nanoplasmonics with Novel Nanoantenna Architectures. Cohen M; Shavit R; Zalevsky Z Sci Rep; 2015 Dec; 5():17562. PubMed ID: 26620270 [TBL] [Abstract][Full Text] [Related]
32. Plasmonics in Biology and Plasmon-Controlled Fluorescence. Lakowicz JR Plasmonics; 2006 Mar; 1(1):5-33. PubMed ID: 19890454 [TBL] [Abstract][Full Text] [Related]
33. Plasmon-controlled fluorescence: A new detection technology. Lakowicz JR; Chowdhury MH; Ray K; Zhang J; Fu Y; Badugu R; Sabanayagam CR; Nowaczyk K; Szmacinski H; Aslan K; Geddes CD Proc SPIE Int Soc Opt Eng; 2006; 6099():609909. PubMed ID: 20953312 [TBL] [Abstract][Full Text] [Related]
34. A witness for coherent electronic vs vibronic-only oscillations in ultrafast spectroscopy. Yuen-Zhou J; Krich JJ; Aspuru-Guzik A J Chem Phys; 2012 Jun; 136(23):234501. PubMed ID: 22779600 [TBL] [Abstract][Full Text] [Related]
35. Plasmonic topological quasiparticle on the nanometre and femtosecond scales. Dai Y; Zhou Z; Ghosh A; Mong RSK; Kubo A; Huang CB; Petek H Nature; 2020 Dec; 588(7839):616-619. PubMed ID: 33361792 [TBL] [Abstract][Full Text] [Related]
36. Time-resolved analysis of strong-field induced plasmon oscillations in metal clusters by spectral interferometry with few-cycle laser fields. Köhn J; Fennel T Phys Chem Chem Phys; 2011 May; 13(19):8747-54. PubMed ID: 21331387 [TBL] [Abstract][Full Text] [Related]
37. Plasmonic Metamaterials for Nanochemistry and Sensing. Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511 [TBL] [Abstract][Full Text] [Related]