These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38351215)

  • 1. Low-force human-human hand interactions induce gait changes through sensorimotor engagement instead of direct mechanical effects.
    Wu M; Hackney ME; Ting LH
    Sci Rep; 2024 Feb; 14(1):3614. PubMed ID: 38351215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors affecting the sensitivity to small interaction forces in humans
    Rashid F; Burns D; Song YS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6066-6069. PubMed ID: 34892500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2018 Mar; 15(1):20. PubMed ID: 29534731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?
    Knaepen K; Mierau A; Swinnen E; Fernandez Tellez H; Michielsen M; Kerckhofs E; Lefeber D; Meeusen R
    PLoS One; 2015; 10(10):e0140626. PubMed ID: 26485148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2021 Sep; 18(1):136. PubMed ID: 34503526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of forward-directed aiding force on gait mechanics in healthy young adults while walking faster.
    Dionisio VC; Hurt CP; Brown DA
    Gait Posture; 2018 Jul; 64():12-17. PubMed ID: 29803081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human-Human Hand Interactions Aid Balance During Walking by Haptic Communication.
    Wu M; Drnach L; Bong SM; Song YS; Ting LH
    Front Robot AI; 2021; 8():735575. PubMed ID: 34805289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects.
    Wagner J; Solis-Escalante T; Grieshofer P; Neuper C; Müller-Putz G; Scherer R
    Neuroimage; 2012 Nov; 63(3):1203-11. PubMed ID: 22906791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensing small interaction forces through proprioception.
    Rashid F; Burns D; Song YS
    Sci Rep; 2021 Nov; 11(1):21829. PubMed ID: 34750408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanics of Step Initiation After Balance Recovery With Implications for Humanoid Robot Locomotion.
    Miller Buffinton C; Buffinton EM; Bieryla KA; Pratt JE
    J Biomech Eng; 2016 Mar; 138(3):4032468. PubMed ID: 26769330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collaborative robotic biomechanical interactions and gait adjustments in young, non-impaired individuals.
    Dionisio VC; Brown DA
    J Neuroeng Rehabil; 2016 Jun; 13(1):57. PubMed ID: 27306027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robot for overground physical human-robot interaction experiments.
    Regmi S; Burns D; Song YS
    PLoS One; 2022; 17(11):e0276980. PubMed ID: 36355780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation by Expert Dancers of a Robot That Performs Partnered Stepping via Haptic Interaction.
    Chen TL; Bhattacharjee T; McKay JL; Borinski JE; Hackney ME; Ting LH; Kemp CC
    PLoS One; 2015; 10(5):e0125179. PubMed ID: 25993099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using a simple rope-pulley system that mechanically couples the arms, legs, and treadmill reduces the metabolic cost of walking.
    Vega D; Arellano CJ
    J Neuroeng Rehabil; 2021 Jun; 18(1):96. PubMed ID: 34098979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physical model of sensorimotor interactions during locomotion.
    Klein TJ; Lewis MA
    J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting telerobotics for sensorimotor rehabilitation: a locomotor embodiment.
    Koh MH; Yen SC; Leung LY; Gans S; Sullivan K; Adibnia Y; Pavel M; Hasson CJ
    J Neuroeng Rehabil; 2021 Apr; 18(1):66. PubMed ID: 33882949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive locomotor training on an end-effector gait robot: evaluation of the ground reaction forces in different training conditions.
    Tomelleri C; Waldner A; Werner C; Hesse S
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975492. PubMed ID: 22275689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toward Multimodal Human-Robot Interaction to Enhance Active Participation of Users in Gait Rehabilitation.
    Gui K; Liu H; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2054-2066. PubMed ID: 28504943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobile Robotic Balance Assistant (MRBA): a gait assistive and fall intervention robot for daily living.
    Li L; Foo MJ; Chen J; Tan KY; Cai J; Swaminathan R; Chua KSG; Wee SK; Kuah CWK; Zhuo H; Ang WT
    J Neuroeng Rehabil; 2023 Mar; 20(1):29. PubMed ID: 36859286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.