These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38351843)

  • 1. Dynamics of individual inkjet printed picoliter droplet elucidated by high speed laser speckle imaging.
    Antonelli R; Fokkink R; Sprakel J; Kodger TE
    Soft Matter; 2024 Feb; 20(9):2141-2150. PubMed ID: 38351843
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed laser speckle imaging to unravel picoliter drop-on-demand to substrate interaction.
    Antonelli R; Fokkink R; Tomozeiu N; Sprakel J; Kodger TE
    Rev Sci Instrum; 2021 Aug; 92(8):083906. PubMed ID: 34470387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Droplet Size and Application of Wettability Analysis for the Development of Ink and Printing Substrates.
    Grüßer M; Waugh DG; Lawrence J; Langer N; Scholz D
    Langmuir; 2019 Sep; 35(38):12356-12365. PubMed ID: 31468975
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in droplet wetting and evaporation.
    Brutin D; Starov V
    Chem Soc Rev; 2018 Jan; 47(2):558-585. PubMed ID: 29090296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accessing individual 75-micron diameter nozzles of a desktop inkjet printer to dispense picoliter droplets on demand.
    Waasdorp R; van den Heuvel O; Versluis F; Hajee B; Ghatkesar MK
    RSC Adv; 2018 Apr; 8(27):14765-14774. PubMed ID: 35541355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Droplet-in-oil array for picoliter-scale analysis based on sequential inkjet printing.
    Sun Y; Chen X; Zhou X; Zhu J; Yu Y
    Lab Chip; 2015 Jun; 15(11):2429-36. PubMed ID: 25904463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel picoliter droplet array for parallel real-time polymerase chain reaction based on double-inkjet printing.
    Sun Y; Zhou X; Yu Y
    Lab Chip; 2014 Sep; 14(18):3603-10. PubMed ID: 25070461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printed Electronics as Prepared by Inkjet Printing.
    Beedasy V; Smith PJ
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the Deposition Morphology of Inkjet-Printed Crystalline Materials via Polydopamine Functional Coatings for Highly Uniform and Electrically Conductive Patterns.
    Liu L; Ma S; Pei Y; Xiong X; Sivakumar P; Singler TJ
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21750-61. PubMed ID: 27525496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing.
    Ihnen AC; Petrock AM; Chou T; Fuchs BE; Lee WY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4691-9. PubMed ID: 22950443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet printed highly porous TiO2 films for improved electrical properties of photoanode.
    Bernacka-Wojcik I; Wojcik PJ; Aguas H; Fortunato E; Martins R
    J Colloid Interface Sci; 2016 Mar; 465():208-14. PubMed ID: 26674237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inkjet-Printed Small-Molecule Organic Light-Emitting Diodes: Halogen-Free Inks, Printing Optimization, and Large-Area Patterning.
    Zhou L; Yang L; Yu M; Jiang Y; Liu CF; Lai WY; Huang W
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40533-40540. PubMed ID: 29076715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Insights into Inkjet Printed Silver Nanowires Flexible Transparent Conductive Films.
    Wang Y; Wu X; Wang K; Lin K; Xie H; Zhang X; Li J
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetting Behavior of Inkjet-Printed Electronic Inks on Patterned Substrates.
    Arya P; Wu Y; Wang F; Wang Z; Cadilha Marques G; Levkin PA; Nestler B; Aghassi-Hagmann J
    Langmuir; 2024 Mar; 40(10):5162-5173. PubMed ID: 38408752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement of dissolution rate of indomethacin by inkjet printing.
    Wickström H; Palo M; Rijckaert K; Kolakovic R; Nyman JO; Määttänen A; Ihalainen P; Peltonen J; Genina N; de Beer T; Löbmann K; Rades T; Sandler N
    Eur J Pharm Sci; 2015 Jul; 75():91-100. PubMed ID: 25817804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sessile droplets containing carbon nanotubes: a study of evaporation dynamics and CNT alignment for printed electronics.
    Goh GL; Saengchairat N; Agarwala S; Yeong WY; Tran T
    Nanoscale; 2019 Jun; 11(22):10603-10614. PubMed ID: 31135018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding droplet jetting on varying substrate for biological applications.
    Lee JM; Huang X; Goh GL; Tran T; Yeong WY
    Int J Bioprint; 2023; 9(5):758. PubMed ID: 37457927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Simulation of Solvent Evaporation in a Reactive Silver Ink Droplet Deposited on a Heated Substrate.
    Zhang W; Yang J; Knopf GK
    ACS Omega; 2023 Oct; 8(42):38991-39003. PubMed ID: 37901545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting of Inkjet Polymer Droplets on Porous Alumina Substrates.
    Zhou H; Chang R; Reichmanis E; Song Y
    Langmuir; 2017 Jan; 33(1):130-137. PubMed ID: 27936769
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size.
    Mavuri A; Mayes AG; Alexander MS
    Materials (Basel); 2019 Jul; 12(14):. PubMed ID: 31311191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.