BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 38352483)

  • 1. Transcriptome-wide quantitative profiling of PUS7-dependent pseudouridylation by nanopore direct long read RNA sequencing.
    Bansal M; Kundu A; Gibson A; Gupta A; Ding J; RudraRaju SV; Sudarshan S; Ding HF
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative profiling of pseudouridylation landscape in the human transcriptome.
    Zhang M; Jiang Z; Ma Y; Liu W; Zhuang Y; Lu B; Li K; Peng J; Yi C
    Nat Chem Biol; 2023 Oct; 19(10):1185-1195. PubMed ID: 36997645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudouridine site assignment by high-throughput in vitro RNA pseudouridylation and sequencing.
    Martinez NM; Schaening-Burgos C; Gilbert WV
    Methods Enzymol; 2021; 658():277-310. PubMed ID: 34517951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae.
    Lovejoy AF; Riordan DP; Brown PO
    PLoS One; 2014; 9(10):e110799. PubMed ID: 25353621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA psi profiling using nanopore DRS reveals cell type-specific pseudouridylation.
    McCormick CA; Qiu Y; Fanari O; Liu Y; Bloch D; Klink IN; Meseonznik M; Jain M; Wanunu M; Rouhanifard SH
    bioRxiv; 2024 May; ():. PubMed ID: 38766185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing.
    Tavakoli S; Nabizadeh M; Makhamreh A; Gamper H; McCormick CA; Rezapour NK; Hou YM; Wanunu M; Rouhanifard SH
    Nat Commun; 2023 Jan; 14(1):334. PubMed ID: 36658122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing.
    Begik O; Lucas MC; Pryszcz LP; Ramirez JM; Medina R; Milenkovic I; Cruciani S; Liu H; Vieira HGS; Sas-Chen A; Mattick JS; Schwartz S; Novoa EM
    Nat Biotechnol; 2021 Oct; 39(10):1278-1291. PubMed ID: 33986546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Pseudouridylation Mechanisms by High-Throughput in Vitro RNA Pseudouridylation and Sequencing.
    Martinez NM; Gilbert WV
    Methods Mol Biol; 2021; 2298():379-397. PubMed ID: 34085256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA.
    Schwartz S; Bernstein DA; Mumbach MR; Jovanovic M; Herbst RH; León-Ricardo BX; Engreitz JM; Guttman M; Satija R; Lander ES; Fink G; Regev A
    Cell; 2014 Sep; 159(1):148-162. PubMed ID: 25219674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptome-wide analysis of pseudouridylation in Drosophila melanogaster.
    Song W; Podicheti R; Rusch DB; Tracey WD
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36534986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pseudouridylation meets next-generation sequencing.
    Zaringhalam M; Papavasiliou FN
    Methods; 2016 Sep; 107():63-72. PubMed ID: 26968262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bisulfite and Nanopore Sequencing for Pseudouridine in RNA.
    Burrows CJ; Fleming AM
    Acc Chem Res; 2023 Oct; 56(19):2740-2751. PubMed ID: 37700703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical pulldown reveals dynamic pseudouridylation of the mammalian transcriptome.
    Li X; Zhu P; Ma S; Song J; Bai J; Sun F; Yi C
    Nat Chem Biol; 2015 Aug; 11(8):592-7. PubMed ID: 26075521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess neuronal epitranscriptome plasticity.
    Fanari O; Tavakoli S; Akeson S; Makhamreh A; Nian K; McCormick CA; Qiu Y; Bloch D; Jain M; Wanunu M; Rouhanifard SH
    bioRxiv; 2024 Apr; ():. PubMed ID: 38585714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling.
    Huang S; Zhang W; Katanski CD; Dersh D; Dai Q; Lolans K; Yewdell J; Eren AM; Pan T
    Genome Biol; 2021 Dec; 22(1):330. PubMed ID: 34872593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing.
    Zhang Y; Yan H; Wei Z; Hong H; Huang D; Liu G; Qin Q; Rong R; Gao P; Meng J; Ying B
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132433. PubMed ID: 38759861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code.
    Safra M; Nir R; Farouq D; Vainberg Slutskin I; Schwartz S
    Genome Res; 2017 Mar; 27(3):393-406. PubMed ID: 28073919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide analysis of pseudouridylation of mRNA and non-coding RNAs in Arabidopsis.
    Sun L; Xu Y; Bai S; Bai X; Zhu H; Dong H; Wang W; Zhu X; Hao F; Song CP
    J Exp Bot; 2019 Oct; 70(19):5089-5600. PubMed ID: 31173101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Posttranscriptional RNA Pseudouridylation.
    De Zoysa MD; Yu YT
    Enzymes; 2017; 41():151-167. PubMed ID: 28601221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pseudouridine Chemical Labeling and Profiling.
    Li X; Ma S; Yi C
    Methods Enzymol; 2015; 560():247-72. PubMed ID: 26253974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.