BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38352509)

  • 1. Mendelian segregation and high recombination rates facilitate genetic analyses in
    Kimball A; Funkhouser-Jones L; Huang W; Xu R; Witola WH; Sibley LD
    bioRxiv; 2024 Feb; ():. PubMed ID: 38352509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mendelian segregation and high recombination rates facilitate genetic analyses in Cryptosporidium parvum.
    Kimball A; Funkhouser-Jones L; Huang W; Xu R; Witola WH; Sibley LD
    PLoS Genet; 2024 Jun; 20(6):e1011162. PubMed ID: 38885280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic crosses in the apicomplexan parasite Cryptosporidium parvum define recombination parameters.
    Tanriverdi S; Blain JC; Deng B; Ferdig MT; Widmer G
    Mol Microbiol; 2007 Mar; 63(5):1432-9. PubMed ID: 17302818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stem-Cell-Derived Platform Enables Complete Cryptosporidium Development In Vitro and Genetic Tractability.
    Wilke G; Funkhouser-Jones LJ; Wang Y; Ravindran S; Wang Q; Beatty WL; Baldridge MT; VanDussen KL; Shen B; Kuhlenschmidt MS; Kuhlenschmidt TB; Witola WH; Stappenbeck TS; Sibley LD
    Cell Host Microbe; 2019 Jul; 26(1):123-134.e8. PubMed ID: 31231046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Culture of Cryptosporidium parvum Using Stem Cell-Derived Intestinal Epithelial Monolayers.
    Wilke G; Wang Y; Ravindran S; Stappenbeck T; Witola WH; Sibley LD
    Methods Mol Biol; 2020; 2052():351-372. PubMed ID: 31452172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Life cycle progression and sexual development of the apicomplexan parasite Cryptosporidium parvum.
    Tandel J; English ED; Sateriale A; Gullicksrud JA; Beiting DP; Sullivan MC; Pinkston B; Striepen B
    Nat Microbiol; 2019 Dec; 4(12):2226-2236. PubMed ID: 31477896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental evidence for genetic recombination in the opportunistic pathogen Cryptosporidium parvum.
    Feng X; Rich SM; Tzipori S; Widmer G
    Mol Biochem Parasitol; 2002 Jan; 119(1):55-62. PubMed ID: 11755186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of pig intestinal cell monolayers infected with Cryptosporidium parvum asexual stages.
    Mirhashemi ME; Noubary F; Chapman-Bonofiglio S; Tzipori S; Huggins GS; Widmer G
    Parasit Vectors; 2018 Mar; 11(1):176. PubMed ID: 29530089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Highly Active AntiRetroviral Therapy and cryptosporidiosis].
    Morales Gomez MA
    Parassitologia; 2004 Jun; 46(1-2):95-9. PubMed ID: 15305695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Conditional Protein Degradation System To Study Essential Gene Function in Cryptosporidium parvum.
    Choudhary HH; Nava MG; Gartlan BE; Rose S; Vinayak S
    mBio; 2020 Aug; 11(4):. PubMed ID: 32843543
    [No Abstract]   [Full Text] [Related]  

  • 11. Labeling surface epitopes to identify Cryptosporidium life stages using a scanning electron microscopy-based immunogold approach.
    Edwards H; Thompson RC; Koh WH; Clode PL
    Mol Cell Probes; 2012 Feb; 26(1):21-8. PubMed ID: 22100878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MCT-Dependent
    Hasheminasab SS; Conejeros I; Gärtner U; Kamena F; Taubert A; Hermosilla CR
    Biology (Basel); 2023 Jul; 12(7):. PubMed ID: 37508391
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of in vitro growth characteristics of Cryptosporidium hominis (IdA15G1) and Cryptosporidium parvum (Iowa-IIaA17G2R1 and IIaA18G3R1).
    Gunasekera S; Clode PL; King B; Monis P; Thierry B; Carr JM; Chopra A; Watson M; O'Dea M; Hijjawi N; Ryan U
    Parasitol Res; 2023 Dec; 122(12):2891-2905. PubMed ID: 37776335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The transcriptome of Cryptosporidium oocysts and intracellular stages.
    Matos LVS; McEvoy J; Tzipori S; Bresciani KDS; Widmer G
    Sci Rep; 2019 May; 9(1):7856. PubMed ID: 31133645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique Tubulin-Based Structures in the Zoonotic Apicomplexan Parasite
    Wang C; Wang D; Nie J; Gao X; Yin J; Zhu G
    Microorganisms; 2021 Sep; 9(9):. PubMed ID: 34576816
    [No Abstract]   [Full Text] [Related]  

  • 16. Aptamer-Based Electrochemical Microfluidic Biosensor for the Detection of
    Siavash Moakhar R; Mahimkar R; Khorrami Jahromi A; Mahshid SS; Del Real Mata C; Lu Y; Vasquez Camargo F; Dixon B; Gilleard J; J Da Silva A; Ndao M; Mahshid S
    ACS Sens; 2023 Jun; 8(6):2149-2158. PubMed ID: 37207303
    [No Abstract]   [Full Text] [Related]  

  • 17. Evidence of high-efficiency cross fertilization in Eimeria acervulina revealed using two lines of transgenic parasites.
    Liu J; Shi F; Zhang Y; Tang X; Wang C; Gao Y; Suo J; Yu Y; Chen L; Zhang N; Sun P; Liu X; Suo X
    Int J Parasitol; 2023 Feb; 53(2):81-89. PubMed ID: 36549444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryptosporidium parvum Elongation Factor 1α Participates in the Formation of Base Structure at the Infection Site During Invasion.
    Yu X; Guo F; Mouneimne RB; Zhu G
    J Infect Dis; 2020 May; 221(11):1816-1825. PubMed ID: 31872225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of differences between DNA content of cell-cultured and freely suspended oocysts of Cryptosporidium parvum and their suitability as DNA standards in qPCR.
    Woolsey ID; Blomstrand B; Øines Ø; Enemark HL
    Parasit Vectors; 2019 Dec; 12(1):596. PubMed ID: 31856894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First Report of Cryptosporidium molnari-Like Genotype and Cryptosporidium parvum Zoonotic Subtypes (IIaA15G2R1 and IIaA18G3R1) in Brown Trout ( Salmo trutta).
    Couso-Pérez S; Ares-Mazás E; Gómez-Couso H
    J Parasitol; 2019 Feb; 105(1):170-179. PubMed ID: 30807710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.