These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38352584)

  • 1. The Role of Hexokinases in Epigenetic Regulation: Altered Hexokinase Expression and Chromatin Stability in Yeast.
    Karri S; Dickinson Q; Jia J; Gan H; Wang Z; Deng Y; Yu C
    Res Sq; 2024 Jan; ():. PubMed ID: 38352584
    [No Abstract]   [Full Text] [Related]  

  • 2. The role of hexokinases in epigenetic regulation: altered hexokinase expression and chromatin stability in yeast.
    Karri S; Dickinson Q; Jia J; Yang Y; Gan H; Wang Z; Deng Y; Yu C
    Epigenetics Chromatin; 2024 Aug; 17(1):27. PubMed ID: 39192292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hexokinase 2 protein regulates the expression of the GLK1, HXK1 and HXK2 genes of Saccharomyces cerevisiae.
    Rodríguez A; De La Cera T; Herrero P; Moreno F
    Biochem J; 2001 May; 355(Pt 3):625-31. PubMed ID: 11311123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexokinase 2: The preferential target of trehalose-6-phosphate over hexokinase 1.
    Magalhães RSS; Boechat FC; Brasil AA; Neto JRM; Ribeiro GD; Paranhos LH; Neves de Souza N; Vieira T; Outeiro TF; Neves BC; Eleutherio ECA
    J Cell Biochem; 2022 Nov; 123(11):1808-1816. PubMed ID: 35944097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2.
    Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM
    Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetics of yeast glucokinase.
    Maitra PK; Lobo Z
    Genetics; 1983 Nov; 105(3):501-15. PubMed ID: 6357942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changing course: Glucose starvation drives nuclear accumulation of Hexokinase 2 in S. cerevisiae.
    Lesko MA; Chandrashekarappa DG; Jordahl EM; Oppenheimer KG; Bowman RW; Shang C; Durrant JD; Schmidt MC; O'Donnell AF
    PLoS Genet; 2023 May; 19(5):e1010745. PubMed ID: 37196001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sugar Phosphorylation Controls Carbon Source Utilization and Virulence of
    Wijnants S; Riedelberger M; Penninger P; Kuchler K; Van Dijck P
    Front Microbiol; 2020; 11():1274. PubMed ID: 32612591
    [No Abstract]   [Full Text] [Related]  

  • 9. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae.
    Bisson LF; Fraenkel DG
    Proc Natl Acad Sci U S A; 1983 Mar; 80(6):1730-4. PubMed ID: 6300872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetics of yeast hexokinase.
    Lobo Z; Maitra PK
    Genetics; 1977 Aug; 86(4):727-44. PubMed ID: 17248750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes.
    Herrero P; Galíndez J; Ruiz N; Martínez-Campa C; Moreno F
    Yeast; 1995 Feb; 11(2):137-44. PubMed ID: 7732723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic consequences of TDA1 deficiency in Saccharomyces cerevisiae: Protein kinase Tda1 is essential for Hxk1 and Hxk2 serine 15 phosphorylation.
    Müller H; Lesur A; Dittmar G; Gentzel M; Kettner K
    Sci Rep; 2022 Oct; 12(1):18084. PubMed ID: 36302925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of null mutations in the hexokinase genes of Saccharomyces cerevisiae on catabolite repression.
    Ma H; Botstein D
    Mol Cell Biol; 1986 Nov; 6(11):4046-52. PubMed ID: 3540605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccharomyces cerevisiae null mutants in glucose phosphorylation: metabolism and invertase expression.
    Walsh RB; Clifton D; Horak J; Fraenkel DG
    Genetics; 1991 Jul; 128(3):521-7. PubMed ID: 1874414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Schizosaccharomyces pombe possesses an unusual and a conventional hexokinase: biochemical and molecular characterization of both hexokinases.
    Petit T; Blázquez MA; Gancedo C
    FEBS Lett; 1996 Jan; 378(2):185-9. PubMed ID: 8549830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed and diverse metabolic and gene-expression regulation of the glycolytic and fermentative pathways in response to a HXK2 deletion in Saccharomyces cerevisiae.
    Rossell S; Lindenbergh A; van der Weijden CC; Kruckeberg AL; van Eunen K; Westerhoff HV; Bakker BM
    FEMS Yeast Res; 2008 Feb; 8(1):155-64. PubMed ID: 17662056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional domains of yeast hexokinase 2.
    Peláez R; Herrero P; Moreno F
    Biochem J; 2010 Nov; 432(1):181-90. PubMed ID: 20815814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state.
    De Winde JH; Crauwels M; Hohmann S; Thevelein JM; Winderickx J
    Eur J Biochem; 1996 Oct; 241(2):633-43. PubMed ID: 8917466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Emi2 Protein of
    Umekawa M; Hamada K; Isono N; Karita S
    J Appl Glycosci (1999); 2020; 67(4):103-109. PubMed ID: 34354536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tps1.
    Ernandes JR; De Meirsman C; Rolland F; Winderickx J; de Winde J; Brandão RL; Thevelein JM
    Yeast; 1998 Feb; 14(3):255-69. PubMed ID: 9580251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.