These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38352628)

  • 1.
    Liu R; Hu Q; Ma G; Pei F; Zhao L; Ma N; Yang F; Liu X; Su A
    Curr Res Food Sci; 2024; 8():100688. PubMed ID: 38352628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D printable vegan plant-based meat analogue: Fortification with three different mushrooms, investigation of printability, and characterization.
    Demircan E; Aydar EF; Mertdinc Mertdinç Z; Kasapoglu Kasapoğlu KN; Ozcelik Özçelik B
    Food Res Int; 2023 Nov; 173(Pt 1):113259. PubMed ID: 37803572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Hydrocolloids on Rheological Properties and Printability of Vegetable Inks for 3D Food Printing.
    Kim HW; Lee JH; Park SM; Lee MH; Lee IW; Doh HS; Park HJ
    J Food Sci; 2018 Dec; 83(12):2923-2932. PubMed ID: 30506688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chocolate-based Ink Three-dimensional Printing (Ci3DP).
    Karyappa R; Hashimoto M
    Sci Rep; 2019 Oct; 9(1):14178. PubMed ID: 31578354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Image-based assessment and machine learning-enabled prediction of printability of polysaccharides-based food ink for 3D printing.
    Lu Y; Rai R; Nitin N
    Food Res Int; 2023 Nov; 173(Pt 2):113384. PubMed ID: 37803721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into the correlations among rheological behaviour, protein molecular structure and 3D printability during the processing of surimi from golden pompano (Trachinotus ovatus).
    Liu Y; Sun Q; Wei S; Xia Q; Pan Y; Ji H; Deng C; Hao J; Liu S
    Food Chem; 2022 Mar; 371():131046. PubMed ID: 34537614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Oil Content on the Printability of Coconut Cream.
    Lee CP; Hoo JY; Hashimoto M
    Int J Bioprint; 2021; 7(2):354. PubMed ID: 33997437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Starch as edible ink in 3D printing for food applications: a review.
    Chen Y; McClements DJ; Peng X; Chen L; Xu Z; Meng M; Zhou X; Zhao J; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(2):456-471. PubMed ID: 35997260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preheating of Gelatin Improves its Printability with Transglutaminase in Direct Ink Writing 3D Printing.
    Tan JJY; Lee CP; Hashimoto M
    Int J Bioprint; 2020; 6(4):296. PubMed ID: 33088999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancements in 3D food printing: a comprehensive overview of properties and opportunities.
    Zhang JY; Pandya JK; McClements DJ; Lu J; Kinchla AJ
    Crit Rev Food Sci Nutr; 2022; 62(17):4752-4768. PubMed ID: 33533641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation into the effects of ink formulations of semi-solid extrusion 3D printing on the performance of printed solid dosage forms.
    Zhang B; Belton P; Teoh XY; Gleadall A; Bibb R; Qi S
    J Mater Chem B; 2023 Dec; 12(1):131-144. PubMed ID: 38050731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of maleic acid-propylene diepoxide hydrogel for 3D printing application for flexible tissue engineering scaffold with high resolution by end capping and graft polymerization.
    Tran HN; Kim IG; Kim JH; Chung EJ; Noh I
    Biomater Res; 2022 Dec; 26(1):75. PubMed ID: 36494708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of astragaloside I-IV based on the separation of HPTLC from Pleurotus ostreatus cultivated with Astragalus.
    Li H; Zhao Y; Yang W; Zhang Z
    J Food Sci; 2020 Oct; 85(10):3183-3190. PubMed ID: 32856317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of 3D printing of toddler foods with special shape and function based on fenugreek gum and flaxseed protein.
    Niu D; Zhang M; Mujumdar AS; Li J
    Int J Biol Macromol; 2023 Dec; 253(Pt 5):127203. PubMed ID: 37793534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer rates of Salmonella Typhimurium, Listeria monocytogenes, and a human norovirus surrogate impacted by macronutrient composition of food inks in 3D food printing systems.
    Hamilton AN; Gibson KE
    Food Microbiol; 2023 Aug; 113():104268. PubMed ID: 37098423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan and Whey Protein Bio-Inks for 3D and 4D Printing Applications with Particular Focus on Food Industry.
    Yang W; Tu A; Ma Y; Li Z; Xu J; Lin M; Zhang K; Jing L; Fu C; Jiao Y; Huang L
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective role of ergothioneine isolated from Pleurotus ostreatus against dextran sulfate sodium-induced ulcerative colitis in rat model.
    Pang L; Wang T; Liao Q; Cheng Y; Wang D; Li J; Fu C; Zhang C; Zhang J
    J Food Sci; 2022 Jan; 87(1):415-426. PubMed ID: 34873706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.