These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38352657)

  • 1. CFD informed design of bench-scale experiments to characterize air entrainment into fuel beds induced by columnar vortices.
    Di Cristina G; Bryant RA
    Fire Saf J; 2023 Dec; 141():. PubMed ID: 38352657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From fire whirls to blue whirls and combustion with reduced pollution.
    Xiao H; Gollner MJ; Oran ES
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9457-62. PubMed ID: 27493219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Natural and Forced Entrainment on PM Emissions from Fire Whirls.
    Hariharan SB; Farahani HF; Rangwala AS; Oran ES; Gollner MJ
    Environ Sci Technol; 2022 Mar; 56(6):3480-3491. PubMed ID: 35171565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large eddy simulation of fire-induced buoyancy driven plume dispersion in an urban street canyon under perpendicular wind flow.
    Hu LH; Huo R; Yang D
    J Hazard Mater; 2009 Jul; 166(1):394-406. PubMed ID: 19153006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burning and plume flow behaviors of annular pool fires: with and without air entrainment through the pool center.
    Huang P; Zhang R; Liu C; Wu X; Chen D; Chen S; Yu L
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):8012-8025. PubMed ID: 38175509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated vortex identification based on Lagrangian averaged vorticity deviation in analysis of blood flow in the atrium from phase contrast MRI.
    Yang K; Wu S; Ghista DN; Yang D; Wong KKL
    Comput Methods Programs Biomed; 2022 Apr; 216():106678. PubMed ID: 35144147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical analysis of propeller induced ground vortices by actuator disk model.
    Yang Y; Veldhuis LLM; Eitelberg G
    J Vis (Tokyo); 2018; 21(1):117-132. PubMed ID: 29367829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigating the turbulent dynamics of small-scale surface fires.
    Desai A; Goodrick S; Banerjee T
    Sci Rep; 2022 Jun; 12(1):10503. PubMed ID: 35732636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire behavior and smoke modeling: Model improvement and measurement needs for next-generation smoke research and forecasting systems.
    Liu Y; Kochanski A; Baker KR; Mell W; Linn R; Paugam R; Mandel J; Fournier A; Jenkins MA; Goodrick S; Achtemeier G; Zhao F; Ottmar R; French NH; Larkin N; Brown T; Hudak A; Dickinson M; Potter B; Clements C; Urbanski S; Prichard S; Watts A; McNamara D
    Int J Wildland Fire; 2019; 28(8):570. PubMed ID: 32632343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of individual vortices trapped along columnar defects in high-temperature superconductors.
    Tonomura A; Kasai H; Kamimura O; Matsuda T; Harada K; Nakayama Y; Shimoyama J; Kishio K; Hanaguri T; Kitazawa K; Sasase M; Okayasu S
    Nature; 2001 Aug; 412(6847):620-2. PubMed ID: 11493915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse centrifugal effect induced by collective motion of vortices in rotating thermal convection.
    Ding SS; Chong KL; Shi JQ; Ding GY; Lu HY; Xia KQ; Zhong JQ
    Nat Commun; 2021 Sep; 12(1):5585. PubMed ID: 34552094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Confinement of fire-induced smoke and carbon monoxide transportation by air curtain in channels.
    Hu LH; Zhou JW; Huo R; Peng W; Wang HB
    J Hazard Mater; 2008 Aug; 156(1-3):327-34. PubMed ID: 18258356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatiotemporal dynamics of a buoyancy-driven turbulent fire.
    Tokami T; Hachijo T; Miyano T; Gotoda H
    Phys Rev E; 2020 Apr; 101(4-1):042214. PubMed ID: 32422785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of streamwise vortex breakdown on supersonic combustion.
    Hiejima T
    Phys Rev E; 2016 Apr; 93():043115. PubMed ID: 27176398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of circular arrangements of vorticity in two dimensions.
    Swaminathan RV; Ravichandran S; Perlekar P; Govindarajan R
    Phys Rev E; 2016 Jul; 94(1-1):013105. PubMed ID: 27575215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study of critical re-entrainment velocity of fire smoke within the street canyons with different building height ratios.
    Wang Q; Zhou T; Liu Q; He P; Tao C; Shi Q
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23319-23327. PubMed ID: 31197666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.
    Pesic DJ; Blagojevic MDj; Zivkovic NV
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1270-84. PubMed ID: 23900951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of magnetic vortex pairs at room temperature in a planar α-Fe
    Chmiel FP; Waterfield Price N; Johnson RD; Lamirand AD; Schad J; van der Laan G; Harris DT; Irwin J; Rzchowski MS; Eom CB; Radaelli PG
    Nat Mater; 2018 Jul; 17(7):581-585. PubMed ID: 29915425
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.