These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 38352868)
1. A machine learning approach using Qi WX; Li S; Xiao J; Li H; Chen J; Zhao S Front Immunol; 2024; 15():1351750. PubMed ID: 38352868 [TBL] [Abstract][Full Text] [Related]
2. Diffusion-weighted MRI and Xu X; Sun ZY; Wu HW; Zhang CP; Hu B; Rong L; Chen HY; Xie HY; Wang YM; Lin HP; Bai YR; Ye Q; Ma XM Radiat Oncol; 2021 Jul; 16(1):132. PubMed ID: 34281566 [TBL] [Abstract][Full Text] [Related]
3. CT-based delta-radiomics nomogram to predict pathological complete response after neoadjuvant chemoradiotherapy in esophageal squamous cell carcinoma patients. Fan L; Yang Z; Chang M; Chen Z; Wen Q J Transl Med; 2024 Jun; 22(1):579. PubMed ID: 38890720 [TBL] [Abstract][Full Text] [Related]
4. Machine learning model based on enhanced CT radiomics for the preoperative prediction of lymphovascular invasion in esophageal squamous cell carcinoma. Wang Y; Bai G; Huang M; Chen W Front Oncol; 2024; 14():1308317. PubMed ID: 38549935 [TBL] [Abstract][Full Text] [Related]
5. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation. Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939 [TBL] [Abstract][Full Text] [Related]
6. Preliminary study on the ability of the machine learning models based on Wang J; Zhou Y; Zhou J; Liu H; Li X Eur J Radiol; 2024 Jul; 176():111531. PubMed ID: 38820949 [TBL] [Abstract][Full Text] [Related]
7. Predicting the Local Response of Esophageal Squamous Cell Carcinoma to Neoadjuvant Chemoradiotherapy by Radiomics with a Machine Learning Method Using Murakami Y; Kawahara D; Tani S; Kubo K; Katsuta T; Imano N; Takeuchi Y; Nishibuchi I; Saito A; Nagata Y Diagnostics (Basel); 2021 Jun; 11(6):. PubMed ID: 34200332 [TBL] [Abstract][Full Text] [Related]
8. Computed tomography-based deep-learning prediction of neoadjuvant chemoradiotherapy treatment response in esophageal squamous cell carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Lam KO; Wong IYH; Law SYK; Chiu KWH; Vardhanabhuti V; Fu J Radiother Oncol; 2021 Jan; 154():6-13. PubMed ID: 32941954 [TBL] [Abstract][Full Text] [Related]
9. MR radiomics predicts pathological complete response of esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy: a multicenter study. Liu Y; Wang Y; Wang X; Xue L; Zhang H; Ma Z; Deng H; Yang Z; Sun X; Men Y; Ye F; Men K; Qin J; Bi N; Wang Q; Hui Z Cancer Imaging; 2024 Jan; 24(1):16. PubMed ID: 38263134 [TBL] [Abstract][Full Text] [Related]
10. A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma. Wang JL; Tang LS; Zhong X; Wang Y; Feng YJ; Zhang Y; Liu JY Front Immunol; 2024; 15():1405146. PubMed ID: 38947338 [TBL] [Abstract][Full Text] [Related]
11. Value of multi-center Zuo Y; Liu L; Chang C; Yan H; Wang L; Sun D; Ruan M; Lei B; Xia X; Xie W; Song S; Huang G Med Phys; 2024 Jul; 51(7):4872-4887. PubMed ID: 38285641 [TBL] [Abstract][Full Text] [Related]
12. The role of Wang X; Yang W; Zhou Q; Luo H; Chen W; Yeung SJ; Zhang S; Gan Y; Zeng B; Liu Z; Feng S; Zhang X; Cheng C Eur J Nucl Med Mol Imaging; 2022 Oct; 49(12):4241-4251. PubMed ID: 35732974 [TBL] [Abstract][Full Text] [Related]
13. Machine learning models predict overall survival and progression free survival of non-surgical esophageal cancer patients with chemoradiotherapy based on CT image radiomics signatures. Cui Y; Li Z; Xiang M; Han D; Yin Y; Ma C Radiat Oncol; 2022 Dec; 17(1):212. PubMed ID: 36575480 [TBL] [Abstract][Full Text] [Related]
14. Use of radiomics based on Zhou Y; Ma XL; Zhang T; Wang J; Zhang T; Tian R Eur J Nucl Med Mol Imaging; 2021 Aug; 48(9):2904-2913. PubMed ID: 33547553 [TBL] [Abstract][Full Text] [Related]
15. [ Yang M; Li X; Cai C; Liu C; Ma M; Qu W; Zhong S; Zheng E; Zhu H; Jin F; Shi H Eur Radiol; 2024 Jul; 34(7):4352-4363. PubMed ID: 38127071 [TBL] [Abstract][Full Text] [Related]
16. Preoperative Prediction of Pathologic Response to Neoadjuvant Chemoradiotherapy in Patients With Esophageal Cancer Using Borggreve AS; Goense L; van Rossum PSN; Heethuis SE; van Hillegersberg R; Lagendijk JJW; Lam MGEH; van Lier ALHMW; Mook S; Ruurda JP; van Vulpen M; Voncken FEM; Aleman BMP; Bartels-Rutten A; Ma J; Fang P; Musall BC; Lin SH; Meijer GJ Int J Radiat Oncol Biol Phys; 2020 Apr; 106(5):998-1009. PubMed ID: 31987972 [TBL] [Abstract][Full Text] [Related]
17. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
18. Radiomics based on Liu J; Sui C; Bian H; Li Y; Wang Z; Fu J; Qi L; Chen K; Xu W; Li X Front Oncol; 2024; 14():1425837. PubMed ID: 39132503 [TBL] [Abstract][Full Text] [Related]
19. Ability of Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography to Predict Outcomes of Neoadjuvant Chemoradiotherapy Followed by Surgical Treatment for Esophageal Squamous Cell Carcinoma. Hamai Y; Hihara J; Emi M; Furukawa T; Yamakita I; Kurokawa T; Okada M Ann Thorac Surg; 2016 Oct; 102(4):1132-9. PubMed ID: 27319990 [TBL] [Abstract][Full Text] [Related]
20. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]