These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 38352868)
21. Radiomics and dosiomics for predicting complete response to definitive chemoradiotherapy patients with oesophageal squamous cell cancer using the hybrid institution model. Kawahara D; Murakami Y; Awane S; Emoto Y; Iwashita K; Kubota H; Sasaki R; Nagata Y Eur Radiol; 2024 Feb; 34(2):1200-1209. PubMed ID: 37589902 [TBL] [Abstract][Full Text] [Related]
22. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment Beukinga RJ; Hulshoff JB; van Dijk LV; Muijs CT; Burgerhof JGM; Kats-Ugurlu G; Slart RHJA; Slump CH; Mul VEM; Plukker JTM J Nucl Med; 2017 May; 58(5):723-729. PubMed ID: 27738011 [TBL] [Abstract][Full Text] [Related]
23. FDG PET using SUV Huang YC; Lu HI; Huang SC; Hsu CC; Chiu NT; Wang YM; Chiu YC; Li SH BMC Med Imaging; 2017 Jan; 17(1):1. PubMed ID: 28056868 [TBL] [Abstract][Full Text] [Related]
24. A novel CT-based radiomics model for predicting response and prognosis of chemoradiotherapy in esophageal squamous cell carcinoma. Kasai A; Miyoshi J; Sato Y; Okamoto K; Miyamoto H; Kawanaka T; Tonoiso C; Harada M; Goto M; Yoshida T; Haga A; Takayama T Sci Rep; 2024 Jan; 14(1):2039. PubMed ID: 38263395 [TBL] [Abstract][Full Text] [Related]
25. A nomogram based on pretreatment CT radiomics features for predicting complete response to chemoradiotherapy in patients with esophageal squamous cell cancer. Luo HS; Huang SF; Xu HY; Li XY; Wu SX; Wu DH Radiat Oncol; 2020 Oct; 15(1):249. PubMed ID: 33121507 [TBL] [Abstract][Full Text] [Related]
26. Delta-radiomics based on CT predicts pathologic complete response in ESCC treated with neoadjuvant immunochemotherapy and surgery. Li K; Li Y; Wang Z; Huang C; Sun S; Liu X; Fan W; Zhang G; Li X Front Oncol; 2023; 13():1131883. PubMed ID: 37251937 [TBL] [Abstract][Full Text] [Related]
27. Potential Predictive Immune and Metabolic Biomarkers of Tumor Microenvironment Regarding Pathological and Clinical Response in Esophageal Cancer After Neoadjuvant Chemoradiotherapy: A Systematic Review. Wang HH; Steffens EN; Kats-Ugurlu G; van Etten B; Burgerhof JGM; Hospers GAP; Plukker JTM Ann Surg Oncol; 2024 Jan; 31(1):433-451. PubMed ID: 37777688 [TBL] [Abstract][Full Text] [Related]
28. Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Zhang H; Tan S; Chen W; Kligerman S; Kim G; D'Souza WD; Suntharalingam M; Lu W Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):195-203. PubMed ID: 24189128 [TBL] [Abstract][Full Text] [Related]
29. Prediction of local recurrence and distant metastasis using radiomics analysis of pretreatment nasopharyngeal [18F]FDG PET/CT images. Peng L; Hong X; Yuan Q; Lu L; Wang Q; Chen W Ann Nucl Med; 2021 Apr; 35(4):458-468. PubMed ID: 33543393 [TBL] [Abstract][Full Text] [Related]
30. A nomogram based on pretreatment radiomics and dosiomics features for predicting overall survival associated with esophageal squamous cell cancer. Kawahara D; Nishioka R; Murakami Y; Emoto Y; Iwashita K; Sasaki R Eur J Surg Oncol; 2024 Jul; 50(7):108450. PubMed ID: 38843660 [TBL] [Abstract][Full Text] [Related]
31. Preoperative prediction of regional lymph node metastasis of colorectal cancer based on He J; Wang Q; Zhang Y; Wu H; Zhou Y; Zhao S Ann Nucl Med; 2021 May; 35(5):617-627. PubMed ID: 33738763 [TBL] [Abstract][Full Text] [Related]
32. Role of Sasaki K; Uchikado Y; Okumura H; Omoto I; Kita Y; Arigami T; Uenosono Y; Owaki T; Maemura K; Natsugoe S Anticancer Res; 2017 Feb; 37(2):859-864. PubMed ID: 28179343 [TBL] [Abstract][Full Text] [Related]
33. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in Zhang Y; Cheng C; Liu Z; Wang L; Pan G; Sun G; Chang Y; Zuo C; Yang X Med Phys; 2019 Oct; 46(10):4520-4530. PubMed ID: 31348535 [TBL] [Abstract][Full Text] [Related]
35. Machine learning approach using Nakajo M; Hirahara D; Jinguji M; Ojima S; Hirahara M; Tani A; Takumi K; Kamimura K; Ohishi M; Yoshiura T Jpn J Radiol; 2024 Jul; 42(7):744-752. PubMed ID: 38491333 [TBL] [Abstract][Full Text] [Related]
36. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging Beukinga RJ; Hulshoff JB; Mul VEM; Noordzij W; Kats-Ugurlu G; Slart RHJA; Plukker JTM Radiology; 2018 Jun; 287(3):983-992. PubMed ID: 29533721 [TBL] [Abstract][Full Text] [Related]
37. Wang S; Di S; Lu J; Xie S; Yu Z; Liang Y; Gong T Thorac Cancer; 2023 Aug; 14(24):2338-2349. PubMed ID: 37424279 [TBL] [Abstract][Full Text] [Related]
38. The MRI radiomics signature can predict the pathologic response to neoadjuvant chemotherapy in locally advanced esophageal squamous cell carcinoma. Lu S; Wang C; Liu Y; Chu F; Jia Z; Zhang H; Wang Z; Lu Y; Wang S; Yang G; Qu J Eur Radiol; 2024 Jan; 34(1):485-494. PubMed ID: 37540319 [TBL] [Abstract][Full Text] [Related]
39. Prediction and validation of pathologic complete response for locally advanced rectal cancer under neoadjuvant chemoradiotherapy based on a novel predictor using interpretable machine learning. Wang Y; Pan Z; Li S; Cai H; Huang Y; Zhuang J; Liu X; Lu X; Guan G Eur J Surg Oncol; 2024 Dec; 50(12):108738. PubMed ID: 39395242 [TBL] [Abstract][Full Text] [Related]