BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 38353041)

  • 1. Spontaneous Appearance of Triiodide Covering the Topmost Layer of the Iodide Solution Interface Without Photo-Oxidation.
    Seki T; Yu CC; Chiang KY; Yu X; Sun S; Bonn M; Nagata Y
    Environ Sci Technol; 2024 Feb; 58(8):3830-3837. PubMed ID: 38353041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces.
    Jubb AM; Hua W; Allen HC
    Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous Iodide Activation at the Air-Water Interface of Aqueous Droplets.
    Guo Y; Li K; Perrier S; An T; Donaldson DJ; George C
    Environ Sci Technol; 2023 Oct; 57(41):15580-15587. PubMed ID: 37804225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface organization of aqueous MgCl2 and application to atmospheric marine aerosol chemistry.
    Casillas-Ituarte NN; Callahan KM; Tang CY; Chen X; Roeselová M; Tobias DJ; Allen HC
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6616-21. PubMed ID: 20133722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyatomic Iodine Species at the Air-Water Interface and Its Relevance to Atmospheric Iodine Chemistry: An HD-VSFG and Raman-MCR Study.
    Saha S; Roy S; Mathi P; Mondal JA
    J Phys Chem A; 2019 Apr; 123(13):2924-2934. PubMed ID: 30830779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectrophotometric determination of the formation constant of triiodide ions in aqueous-organic solvent or polymer mixed media both in absence and presence of a surfactant.
    Naorem H; Devi SD
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Jan; 101():67-73. PubMed ID: 23099162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental chemistry at vapor/water interfaces: insights from vibrational sum frequency generation spectroscopy.
    Jubb AM; Hua W; Allen HC
    Annu Rev Phys Chem; 2012; 63():107-30. PubMed ID: 22224702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution, structure, and dynamics of cesium and iodide ions at the H2O-CCl4 and H2O-vapor interfaces.
    Wick CD; Dang LX
    J Phys Chem B; 2006 Apr; 110(13):6824-31. PubMed ID: 16570991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone.
    Pillar-Little EA; Guzman MI; Rodriguez JM
    Environ Sci Technol; 2013 Oct; 47(19):10971-9. PubMed ID: 23987087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Erratum: Eyestalk Ablation to Increase Ovarian Maturation in Mud Crabs.
    J Vis Exp; 2023 May; (195):. PubMed ID: 37235796
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface.
    Hao H; Xie Q; Ai J; Wang Y; Bian H
    Phys Chem Chem Phys; 2020 May; 22(18):10106-10115. PubMed ID: 32342973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The opposing effect of butanol and butyric acid on the abundance of bromide and iodide at the aqueous solution-air interface.
    Lee MT; Orlando F; Khabiri M; Roeselová M; Brown MA; Ammann M
    Phys Chem Chem Phys; 2019 Apr; 21(16):8418-8427. PubMed ID: 30945704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attraction of iodide ions by the free water surface, revealed by simulations with a polarizable force field based on Drude oscillators.
    Archontis G; Leontidis E; Andreou G
    J Phys Chem B; 2005 Sep; 109(38):17957-66. PubMed ID: 16853305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of Water Evaporation Process at Air/Water Interface using Hofmeister Ions.
    Rana B; Fairhurst DJ; Jena KC
    J Am Chem Soc; 2022 Oct; 144(39):17832-17840. PubMed ID: 36131621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface residence and uptake of methyl chloride and methyl alcohol at the air/water interface studied by vibrational sum frequency spectroscopy and molecular dynamics.
    Harper K; Minofar B; Sierra-Hernandez MR; Casillas-Ituarte NN; Roeselova M; Allen HC
    J Phys Chem A; 2009 Mar; 113(10):2015-24. PubMed ID: 19195991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water Bending Mode at the Water-Vapor Interface Probed by Sum-Frequency Generation Spectroscopy: A Combined Molecular Dynamics Simulation and Experimental Study.
    Nagata Y; Hsieh CS; Hasegawa T; Voll J; Backus EH; Bonn M
    J Phys Chem Lett; 2013 Jun; 4(11):1872-7. PubMed ID: 26283123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial structures of acidic and basic aqueous solutions.
    Tian C; Ji N; Waychunas GA; Shen YR
    J Am Chem Soc; 2008 Oct; 130(39):13033-9. PubMed ID: 18774819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of vibrational resonances of water-vapor interfaces by phase-sensitive sum-frequency spectroscopy.
    Ji N; Ostroverkhov V; Tian CS; Shen YR
    Phys Rev Lett; 2008 Mar; 100(9):096102. PubMed ID: 18352727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Sodium Iodide Salt on the Interfacial Properties of Aqueous Methanol Solution by a Combined Molecular Simulation and Sum Frequency Generation Vibrational Spectroscopy Study.
    Liu J; Li X; Hou J; Li X; Lu Z
    Langmuir; 2019 May; 35(21):7050-7059. PubMed ID: 31055930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of Water with the Gypsum (010) Surface: Structure and Dynamics from Nonlinear Vibrational Spectroscopy and Ab Initio Molecular Dynamics.
    Santos JCC; Negreiros FR; Pedroza LS; Dalpian GM; Miranda PB
    J Am Chem Soc; 2018 Dec; 140(49):17141-17152. PubMed ID: 30507120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.