These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38353307)

  • 1. Dynamical arrest transition of a bidisperse two-patchy colloidal dispersion: A dynamic Monte Carlo study.
    Ramírez-Kantun R; Pérez-Ángel G; Castañeda-Priego R
    J Chem Phys; 2024 Feb; 160(6):. PubMed ID: 38353307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics.
    Gallegos JAS; Perdomo-Pérez R; Valadez-Pérez NE; Castañeda-Priego R
    Phys Rev E; 2021 Dec; 104(6-1):064606. PubMed ID: 35030878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equilibrium gels of low-valence DNA nanostars: a colloidal model for strong glass formers.
    Biffi S; Cerbino R; Nava G; Bomboi F; Sciortino F; Bellini T
    Soft Matter; 2015 Apr; 11(16):3132-8. PubMed ID: 25747102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical facilitation governs glassy dynamics in suspensions of colloidal ellipsoids.
    Mishra CK; Hima Nagamanasa K; Ganapathy R; Sood AK; Gokhale S
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15362-7. PubMed ID: 25313030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow dynamics in a primitive tetrahedral network model.
    De Michele C; Tartaglia P; Sciortino F
    J Chem Phys; 2006 Nov; 125(20):204710. PubMed ID: 17144726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Monte Carlo algorithm for out-of-equilibrium processes in colloidal dispersions.
    Corbett D; Cuetos A; Dennison M; Patti A
    Phys Chem Chem Phys; 2018 Jun; 20(22):15118-15127. PubMed ID: 29808873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoupling of rotation and translation at the colloidal glass transition.
    Geiger J; Grimm N; Fuchs M; Zumbusch A
    J Chem Phys; 2024 Jul; 161(1):. PubMed ID: 38958164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface heterogeneity affects percolation and gelation of colloids: dynamic simulations with random patchy spheres.
    Wang G; Swan JW
    Soft Matter; 2019 Jun; 15(25):5094-5108. PubMed ID: 31184670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization and dynamical arrest of colloidal fluids in a disordered matrix of polydisperse obstacles.
    Elizondo-Aguilera LF; Medina-Noyola M
    J Chem Phys; 2015 Jun; 142(22):224901. PubMed ID: 26071725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roughness induced rotational slowdown near the colloidal glass transition.
    Ilhan B; Mugele F; Duits MHG
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1709-1716. PubMed ID: 34592556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brownian dynamics and dynamic Monte Carlo simulations of isotropic and liquid crystal phases of anisotropic colloidal particles: a comparative study.
    Patti A; Cuetos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011403. PubMed ID: 23005413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles.
    Newton AC; Groenewold J; Kegel WK; Bolhuis PG
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15308-13. PubMed ID: 26621742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotational and translational dynamics in dense fluids of patchy particles.
    Marín-Aguilar S; Wensink HH; Foffi G; Smallenburg F
    J Chem Phys; 2020 Feb; 152(8):084501. PubMed ID: 32113356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational and rotational critical-like behaviors in the glass transition of colloidal ellipsoid monolayers.
    Zheng Z; Ni R; Wang Y; Han Y
    Sci Adv; 2021 Jan; 7(3):. PubMed ID: 33523902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patchy colloids: state of the art and perspectives.
    Bianchi E; Blaak R; Likos CN
    Phys Chem Chem Phys; 2011 Apr; 13(14):6397-410. PubMed ID: 21331432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of dynamical heterogeneities in colloidal nanoclay suspensions approaching dynamical arrest.
    Gadige P; Saha D; Behera SK; Bandyopadhyay R
    Sci Rep; 2017 Aug; 7(1):8017. PubMed ID: 28808265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Interplay between the Theories of Mode Coupling and of Percolation Transition in Attractive Colloidal Systems.
    Mallamace F; Mensitieri G; Salzano de Luna M; Lanzafame P; Papanikolaou G; Mallamace D
    Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse patchy colloids with small patches: fluid structure and dynamical slowing down.
    Ferrari S; Bianchi E; Kalyuzhnyi YV; Kahl G
    J Phys Condens Matter; 2015 Jun; 27(23):234104. PubMed ID: 26010958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.