These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38353370)

  • 1. Energy-Efficient Electrosynthesis of High Value-Added Active Chlorine Coupled with H
    Zhu W; Wei Z; Ma Y; Ren M; Fu X; Li M; Zhang C; Wang J; Guo S
    Angew Chem Int Ed Engl; 2024 Apr; 63(15):e202319798. PubMed ID: 38353370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy-Saving Hydrogen Production by Seawater Electrolysis Coupling Sulfion Degradation.
    Zhang L; Wang Z; Qiu J
    Adv Mater; 2022 Apr; 34(16):e2109321. PubMed ID: 35150022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-saving hydrogen production from sulfion oxidation-hybrid seawater splitting enabled by superwettable corrosion-resistant NiFe layered double hydroxide/FeNi
    Ai L; Tian Y; Xiao T; Zhang J; Zhang C; Jiang J
    J Colloid Interface Sci; 2024 Nov; 673():607-615. PubMed ID: 38897062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation.
    Sun F; Qin J; Wang Z; Yu M; Wu X; Sun X; Qiu J
    Nat Commun; 2021 Jul; 12(1):4182. PubMed ID: 34234135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox-mediated decoupled seawater direct splitting for H
    Liu T; Lan C; Tang M; Li M; Xu Y; Yang H; Deng Q; Jiang W; Zhao Z; Wu Y; Xie H
    Nat Commun; 2024 Oct; 15(1):8874. PubMed ID: 39402055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production.
    Li P; Wang S; Samo IA; Zhang X; Wang Z; Wang C; Li Y; Du Y; Zhong Y; Cheng C; Xu W; Liu X; Kuang Y; Lu Z; Sun X
    Research (Wash D C); 2020; 2020():2872141. PubMed ID: 33043295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Phase Separation-Induced Self-Healing Catalyst for Efficient Direct Seawater Electrolysis.
    Zhang Y; Jeong S; Son E; Choi Y; Lee S; Baik JM; Park H
    ACS Nano; 2024 Jun; 18(25):16312-16323. PubMed ID: 38864411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling Hydrazine Oxidation with Seawater Electrolysis for Energy-Saving Hydrogen Production over Bifunctional CoNC Nanoarray Electrocatalysts.
    Xin Y; Shen K; Guo T; Chen L; Li Y
    Small; 2023 May; 19(21):e2300019. PubMed ID: 36840653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-saving hydrogen production by seawater electrolysis coupling tip-enhanced electric field promoted electrocatalytic sulfion oxidation.
    Li T; Wang B; Cao Y; Liu Z; Wang S; Zhang Q; Sun J; Zhou G
    Nat Commun; 2024 Jul; 15(1):6173. PubMed ID: 39039041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing anti-chlorine corrosion of Ni
    Ou W; Zhang W; Qin H; Zhou W; Tang Y; Gao Q
    J Colloid Interface Sci; 2024 Feb; 655():852-862. PubMed ID: 37979291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis.
    Shi H; Wang T; Liu J; Chen W; Li S; Liang J; Liu S; Liu X; Cai Z; Wang C; Su D; Huang Y; Elbaz L; Li Q
    Nat Commun; 2023 Jul; 14(1):3934. PubMed ID: 37402710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative Insignificance of Polyamide Layer Selectivity for Seawater Electrolysis Applications.
    Zhou X; Shi L; Taylor RF; Xie C; Bian B; Picioreanu C; Logan BE
    Environ Sci Technol; 2023 Oct; 57(39):14569-14578. PubMed ID: 37722004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Advances in Hybrid Seawater Electrolysis for Hydrogen Production.
    Yu Z; Liu L
    Adv Mater; 2024 Mar; 36(13):e2308647. PubMed ID: 38143285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Doping and Synergism toward High-Performance Seawater Electrolysis.
    Chang J; Wang G; Yang Z; Li B; Wang Q; Kuliiev R; Orlovskaya N; Gu M; Du Y; Wang G; Yang Y
    Adv Mater; 2021 Aug; 33(33):e2101425. PubMed ID: 34235791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mott-Schottky heterojunction of Se/NiSe
    Khatun S; Roy P
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):844-854. PubMed ID: 36356450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production.
    Rau GH; Carroll SA; Bourcier WL; Singleton MJ; Smith MM; Aines RD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(25):10095-100. PubMed ID: 23729814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of electrolysis time and electric potential on chlorine generation of electrolyzed deep ocean water.
    Hsu GW; Lu YF; Hsu SY
    J Food Drug Anal; 2017 Oct; 25(4):759-765. PubMed ID: 28987351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ag Nanoparticle-Induced Surface Chloride Immobilization Strategy Enables Stable Seawater Electrolysis.
    Xu W; Wang Z; Liu P; Tang X; Zhang S; Chen H; Yang Q; Chen X; Tian Z; Dai S; Chen L; Lu Z
    Adv Mater; 2024 Jan; 36(2):e2306062. PubMed ID: 37907201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoporous Nickel Cathode with an Electrostatic Chlorine-Resistant Surface for Industrial Seawater Electrolysis Hydrogen Production.
    Wang J; Li Y; Xu T; Zheng J; Xiao K; Sun B; Ge M; Yuan X; Zhou C; Cai Z
    Inorg Chem; 2024 Apr; 63(13):5773-5778. PubMed ID: 38498977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-supporting, hierarchically hollow structured NiFe-PBA electrocatalyst for efficient alkaline seawater oxidation.
    Zhang K; Xu M; Wang J; Chen Z
    Nanoscale; 2023 Nov; 15(43):17525-17533. PubMed ID: 37869872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.