Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38353633)

  • 21. The MR radiomic signature can predict preoperative lymph node metastasis in patients with esophageal cancer.
    Qu J; Shen C; Qin J; Wang Z; Liu Z; Guo J; Zhang H; Gao P; Bei T; Wang Y; Liu H; Kamel IR; Tian J; Li H
    Eur Radiol; 2019 Feb; 29(2):906-914. PubMed ID: 30039220
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [MRI associated biomarker analysis for diagnosis of lymph node metastasis in T1-2 stage rectal cancer].
    Liu Y; Wan LJ; Zhang HM; Peng WJ; Zou SM; Ouyang H; Zhao XM; Zhou CW
    Zhonghua Zhong Liu Za Zhi; 2021 Feb; 43(2):207-212. PubMed ID: 33601486
    [No Abstract]   [Full Text] [Related]  

  • 23. MRI-Based Machine Learning for Differentiating Borderline From Malignant Epithelial Ovarian Tumors: A Multicenter Study.
    Li Y; Jian J; Pickhardt PJ; Ma F; Xia W; Li H; Zhang R; Zhao S; Cai S; Zhao X; Zhang J; Zhang G; Jiang J; Zhang Y; Wang K; Lin G; Feng F; Lu J; Deng L; Wu X; Qiang J; Gao X
    J Magn Reson Imaging; 2020 Sep; 52(3):897-904. PubMed ID: 32045064
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning.
    Zhou LQ; Wu XL; Huang SY; Wu GG; Ye HR; Wei Q; Bao LY; Deng YB; Li XR; Cui XW; Dietrich CF
    Radiology; 2020 Jan; 294(1):19-28. PubMed ID: 31746687
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Weakly Supervised MRI Slice-Level Deep Learning Classification of Prostate Cancer Approximates Full Voxel- and Slice-Level Annotation: Effect of Increasing Training Set Size.
    Weißer C; Netzer N; Görtz M; Schütz V; Hielscher T; Schwab C; Hohenfellner M; Schlemmer HP; Maier-Hein KH; Bonekamp D
    J Magn Reson Imaging; 2024 Apr; 59(4):1409-1422. PubMed ID: 37504495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Deep Learning Model Based on MRI and Clinical Factors Facilitates Noninvasive Evaluation of KRAS Mutation in Rectal Cancer.
    Liu H; Yin H; Li J; Dong X; Zheng H; Zhang T; Yin Q; Zhang Z; Lu M; Zhang H; Wang D
    J Magn Reson Imaging; 2022 Dec; 56(6):1659-1668. PubMed ID: 35587946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Utility of diffusion weighted imaging-based radiomics nomogram to predict pelvic lymph nodes metastasis in prostate cancer.
    Liu X; Tian J; Wu J; Zhang Y; Wang X; Zhang X; Wang X
    BMC Med Imaging; 2022 Nov; 22(1):190. PubMed ID: 36333664
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishment and validation of nomograms for predicting mesorectal lymph node staging and restaging.
    Zhuang Z; Ma X; Zhang Y; Yang X; Wei M; Deng X; Wang Z
    Int J Colorectal Dis; 2022 Sep; 37(9):2069-2083. PubMed ID: 36028723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model.
    Ma X; Xia L; Chen J; Wan W; Zhou W
    Eur Radiol; 2023 Mar; 33(3):1949-1962. PubMed ID: 36169691
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Can Ex Vivo Magnetic Resonance Imaging of Rectal Cancer Specimens Improve the Mesorectal Lymph Node Yield for Pathological Examination?
    Stijns R; Philips B; Wauters C; de Wilt J; Nagtegaal I; Scheenen T
    Invest Radiol; 2019 Oct; 54(10):645-652. PubMed ID: 31219996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Artificial intelligence for pre-operative lymph node staging in colorectal cancer: a systematic review and meta-analysis.
    Bedrikovetski S; Dudi-Venkata NN; Kroon HM; Seow W; Vather R; Carneiro G; Moore JW; Sammour T
    BMC Cancer; 2021 Sep; 21(1):1058. PubMed ID: 34565338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma.
    Wei Q; Yuan W; Jia Z; Chen J; Li L; Yan Z; Liao Y; Mao L; Hu S; Liu X; Chen W
    Abdom Radiol (NY); 2023 Feb; 48(2):458-470. PubMed ID: 36460837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Non-invasive MR assessment of the microstructure and microcirculation in regional lymph nodes for rectal cancer: a study of intravoxel incoherent motion imaging.
    Yang X; Chen Y; Wen Z; Liu Y; Xiao X; Liang W; Yu S
    Cancer Imaging; 2019 Nov; 19(1):70. PubMed ID: 31685035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy of F-18 FDG PET/CT with optimal cut-offs of maximum standardized uptake value according to size for diagnosis of regional lymph node metastasis in patients with rectal cancer.
    Bae SU; Won KS; Song BI; Jeong WK; Baek SK; Kim HW
    Cancer Imaging; 2018 Sep; 18(1):32. PubMed ID: 30217167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists.
    Xu Q; Zhu Q; Liu H; Chang L; Duan S; Dou W; Li S; Ye J
    J Magn Reson Imaging; 2022 Apr; 55(4):1251-1259. PubMed ID: 34462986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The value of machine learning models based on biparametric MRI for diagnosis of prostate cancer and clinically significant prostate cancer].
    Qiao XM; Hu CH; Hu S; Hu CH; Wang XM; Shen JK; Ji LB; Song Y; Bao J
    Zhonghua Yi Xue Za Zhi; 2023 May; 103(19):1446-1454. PubMed ID: 37198106
    [No Abstract]   [Full Text] [Related]  

  • 38. Evaluation of the diagnostic performance of apparent diffusion coefficient (ADC) values on diffusion-weighted magnetic resonance imaging (DWI) in differentiating between benign and metastatic lymph nodes in cases of cholangiocarcinoma.
    Promsorn J; Soontrapa W; Somsap K; Chamadol N; Limpawattana P; Harisinghani M
    Abdom Radiol (NY); 2019 Feb; 44(2):473-481. PubMed ID: 30151713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Value of intravoxel incoherent motion magnetic resonance imaging for differentiating metastatic from nonmetastatic mesorectal lymph nodes with different short-axis diameters in rectal cancer.
    Long L; Zhang H; He X; Zhou J; Guo D; Liu X
    J Cancer Res Ther; 2019; 15(7):1508-1515. PubMed ID: 31939430
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MR Imaging of Rectal Cancer: Radiomics Analysis to Assess Treatment Response after Neoadjuvant Therapy.
    Horvat N; Veeraraghavan H; Khan M; Blazic I; Zheng J; Capanu M; Sala E; Garcia-Aguilar J; Gollub MJ; Petkovska I
    Radiology; 2018 Jun; 287(3):833-843. PubMed ID: 29514017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.